Journal of Materials Science

, Volume 43, Issue 15, pp 5251–5257 | Cite as

PTCR barium titanate ceramics obtained from oxalate-derived powders with varying crystallinity

  • Victor ShutEmail author
  • Sergey Kostomarov
  • Aleksey Gavrilov


Barium titanate powders with average crystallite sizes of 68–2000 nm have been prepared by the calcination of barium titanyl oxalate (BTO) at temperatures of 700–1150 °C. The morphology and recrystallization kinetics of the powders have been studied using the SEM and X-ray methods. Samples of PTCR (BaCaPb)TiO3 ceramics have been made from these powders and their microstructure and electrical properties have been investigated. It has been found that the increase of the crystallinity of the starting powders suppresses recrystallization of the ceramics, leading to growth in resistivity and significantly influencing on the resistance jump and breakdown strength of the ceramics. An optimal temperature range for the calcination of BTO has been found to ensure maximum breakdown strength of the PTC thermistors with the resistance of 31 Ω. At this temperature range the barium titanate powders had crystallite sizes of ~200 nm.


BaTiO3 Calcination Temperature Barium Titanate Breakdown Strength Calcium Titanate 


  1. 1.
    Heywang W (1971) J Mater Sci 6:1214. doi: CrossRefGoogle Scholar
  2. 2.
    Huybrechts B, Ishizaki K, Takata M (1995) J Mater Sci 30:2463. doi: CrossRefGoogle Scholar
  3. 3.
    Blamey JM, Parry TV (1993) J Mater Sci 28:4311. doi: CrossRefGoogle Scholar
  4. 4.
    Nozaki K, Kawaguchi M, Sato K, Kuwabara M (1995) J Mater Sci 30:3395. doi: CrossRefGoogle Scholar
  5. 5.
    Clabaugh WS, Swiggard EM, Gilchrist R (1956) J Res Natl Bur Stand 56:289CrossRefGoogle Scholar
  6. 6.
    Saito Y (2000) Mater High Temp 17:471CrossRefGoogle Scholar
  7. 7.
    Ragulya AV, Vasyl’kiv OO, Skorokhod VV (1997) Powder Metallurgy Met Ceramics 36:170. doi: CrossRefGoogle Scholar
  8. 8.
    Kingery UD, Bowen HK, Uhlmann DR (1976) Introduction to ceramics. Wiley, New YorkGoogle Scholar
  9. 9.
    Drofenik M (1993) J Am Ceram Soc 76:123. doi: CrossRefGoogle Scholar
  10. 10.
    Desu SB, Payne DA (1990) J Am Ceram Soc 73:3407. doi: CrossRefGoogle Scholar
  11. 11.
    Liu G, Wang X-H, Lin Y, Li LT, Nan C-W (2005) J Appl Phys 98:044105. doi: CrossRefGoogle Scholar
  12. 12.
    Hanke L, Schmelz H (1982) Ber Dtch Keram Ges 59:221Google Scholar
  13. 13.
    Glinchuk MD, Bukov IP, Bilous AG (2000) J Mater Chem 10:941. doi: CrossRefGoogle Scholar
  14. 14.
    Sinclair DC, West AR (1989) J Appl Phys 66:3850. doi: CrossRefGoogle Scholar
  15. 15.
    Yoon SH, Lee KH, Kim H (2000) J Am Ceram Soc 83:2463CrossRefGoogle Scholar
  16. 16.
    Koschek G, Kubalek E (1985) J Am Ceram Soc 68:582. doi: CrossRefGoogle Scholar
  17. 17.
    Jonker GH (1967) Mater Res Bull 2:401. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Victor Shut
    • 1
    Email author
  • Sergey Kostomarov
    • 1
  • Aleksey Gavrilov
    • 1
  1. 1.Laboratory of Non-Linear MaterialsInstitute of Technical AcousticsVitebskBelarus

Personalised recommendations