Advertisement

Journal of Materials Science

, Volume 43, Issue 17, pp 5962–5971 | Cite as

Auxetic behaviour from stretching connected squares

  • Joseph N. GrimaEmail author
  • Pierre S. Farrugia
  • Christian Caruana
  • Ruben Gatt
  • Daphne Attard
Article

Abstract

Systems with negative Poisson’s ratio (auxetic) exhibit the unusual characteristic of getting fatter when stretched and thinner when compressed. Such behaviour is a scale-independent property and is the result of a cooperation between the internal geometry of the system and the way this deforms when uniaxially stretched. Here, we analyse the anisotropic mechanical properties for a system constructed from connected squares which can deform through changes in length of the sides of the squares (idealised ‘stretching squares’ model). In particular, we show that this system may exhibit a negative Poisson’s ratio which depends on the angle between the squares and the direction of loading but is independent of the size of the squares which suggests that this model may be implemented at any scale of structure including the micro- and nano-level. We also show how this model compares and complements the existing ‘rotating squares’ model which also works on a system with the same geometric characteristics and which has been shown to lead to auxeticity in various classes of materials.

Keywords

Shear Modulo Compliance Matrix Compliance Matrice Stretch Force Constant Auxetic Behaviour 

Notes

Acknowledgements

We acknowledge the financial support of the Malta Council for Science and Technology through the National RTDI programme and of the Malta Government Scholarship Scheme (Grant Number ME 367/07/17 awarded to Daphne Attard). The contribution of Victor Zammit of the University of Malta is also gratefully acknowledged.

References

  1. 1.
    Evans KE, Nkansah MA, Hutchinsonm IJ, Rogers SC (1991) Nature 353:124CrossRefGoogle Scholar
  2. 2.
    Gibson LJ, Ashby MF, Schajer GS, Robertson CI (1982) Proc R Soc Lond A 382:25CrossRefGoogle Scholar
  3. 3.
    Almgren RF (1985) J Elasticity 15:427CrossRefGoogle Scholar
  4. 4.
    Prall D, Lakes RS (1997) Int J Mech Sci 39:305CrossRefGoogle Scholar
  5. 5.
    Spadoni A, Ruzzene M, Scarpa F (2005) Phys Status Sol B 242:695CrossRefGoogle Scholar
  6. 6.
    Wojciechowski KW (1987) Mol Phys 61:1247CrossRefGoogle Scholar
  7. 7.
    Wojciechowski KW, Branka AC (1989) Phys Rev A 40:7222CrossRefGoogle Scholar
  8. 8.
    Wojciechowski KW (2003) J Phys A: Math Gen 36:11765CrossRefGoogle Scholar
  9. 9.
    Lakes RS (1987) Science 235:1038CrossRefGoogle Scholar
  10. 10.
    Evans KE, Nkansah MA, Hutchinson IJ (1994) Acta Metall Mater 2:1289CrossRefGoogle Scholar
  11. 11.
    Choi JB, Lakes RS (1995) J Compos Mater 29:113CrossRefGoogle Scholar
  12. 12.
    Chan N, Evans KE (1998) J Cellular Plast 34:231CrossRefGoogle Scholar
  13. 13.
    Smith CW, Grima JN, Evans KE (2000) Acta Mater 48:4349CrossRefGoogle Scholar
  14. 14.
    Grima JN, Alderson A, Evans KE (2005) J Phys Soc Jpn 74:1341CrossRefGoogle Scholar
  15. 15.
    Evans KE, Caddock BD (1989) J Phys D: Appl Phys 22:1883CrossRefGoogle Scholar
  16. 16.
    Alderson A, Evans KE (1995) J Mater Sci 30:3319CrossRefGoogle Scholar
  17. 17.
    Alderson A, Evans KE (1997) J Mater Sci 32:2797CrossRefGoogle Scholar
  18. 18.
    Baughman RH, Galvao DS (1993) Nature 365:635CrossRefGoogle Scholar
  19. 19.
    He CB, Liu PW, Griffin AC (1998) Macromolecules 31:3145CrossRefGoogle Scholar
  20. 20.
    Grima JN, Evans KE (2000) Chem Commun 1531Google Scholar
  21. 21.
    Grima JN, Williams JJ, Evans KE (2005) Chem Commun 4065Google Scholar
  22. 22.
    Wei GY (2005) Phys Status Sol B 242:742CrossRefGoogle Scholar
  23. 23.
    Baughman RH, Shacklette JM, Zakhidov AA, Stafstrom S (1998) Nature 392:362CrossRefGoogle Scholar
  24. 24.
    Yeganeh-Haeri A, Weidner DJ, Parise DJ (1992) Science 257:650CrossRefGoogle Scholar
  25. 25.
    Keskar NR, Chelikowsky JR (1992) Phys Rev B 46:1CrossRefGoogle Scholar
  26. 26.
    Kimizuka H, Kaburaki H, Kogure Y (2000) Phys Rev Lett 84:5548CrossRefGoogle Scholar
  27. 27.
    Alderson A, Evans KE (2002) Phys Rev Lett 89:225503CrossRefGoogle Scholar
  28. 28.
    Kimizuka H, Kaburaki H, Kogure Y (2003) Phys Rev B 67:024105CrossRefGoogle Scholar
  29. 29.
    Alderson A, Alderson KL, Evans KE, Grima JN, Williams M (2004) J Met Nano Mater 23:55Google Scholar
  30. 30.
    Alderson A, Alderson KL, Evans KE, Grima JN, Williams M, Davies PJ (2005) Phys Status Sol B 242:499CrossRefGoogle Scholar
  31. 31.
    Grima JN, Gatt R, Alderson A, Evans KE (2005) J Mater Chem 15:4003CrossRefGoogle Scholar
  32. 32.
    Grima JN, Gatt R, Alderson A, Evans KE (2006) Mater Sci Eng A 423:219CrossRefGoogle Scholar
  33. 33.
    Grima JN, Jackson R, Alderson A, Evans KE (2000) Adv Mater 12:1912CrossRefGoogle Scholar
  34. 34.
    Grima JN (2000) PhD Thesis, University of Exeter, Exeter, UKGoogle Scholar
  35. 35.
    Grima JN, Alderson A, KE Evans (1999) Zeolites with negative Poisson’s ratios. Paper presented at the 4th Materials Chemistry conference, Dublin, Ireland, July 1999, p 81Google Scholar
  36. 36.
    Grima JN, Evans KE (2000) J Mater Sci Lett 19:1563CrossRefGoogle Scholar
  37. 37.
    Ishibashi Y, Iwata M (2000) J Phys Soc Jpn 69:2702CrossRefGoogle Scholar
  38. 38.
    Grima JN, Evans KE (2006) J Mater Sci 41:3193CrossRefGoogle Scholar
  39. 39.
    Alderson A, Alderson KL, Evans KE, Grima JN, Williams MR, Davies PJ (2004) Comput Methods Sci Technol 10:117CrossRefGoogle Scholar
  40. 40.
    Grima JN, Alderson A, Evans KE (2005) Phys Status Sol B 242:561CrossRefGoogle Scholar
  41. 41.
    Grima JN, Zammit V, Gatt R, Alderson A, Evans KE (2007) Phys Status Sol (b) 244:866CrossRefGoogle Scholar
  42. 42.
    Gatt R, Zammit V, Caruana C, Grima JN (2008) Phys Status Sol (b) 245:502CrossRefGoogle Scholar
  43. 43.
    Nye JF (1957) Physical properties of crystals. Clarendon Press, OxfordGoogle Scholar
  44. 44.
    Gere JM (2002) In: Mechanics of materials, 5th edn. Nelson Thornes Ltd., UKGoogle Scholar
  45. 45.
    Masters IG, Evans KE (1996) Comp Struct 34:1Google Scholar
  46. 46.
    Lakes R (https://doi.org/silver.neep.wisc.edu/~lakes), as on 29th June 2007
  47. 47.
    Wells AF (1984) In: Structural inorganic chemistry, 5th edn. O.U.P., OxfordGoogle Scholar
  48. 48.
    Caruana C (2007) B. Sc. (Hons.) Dissertation, University of Malta, Msida, MaltaGoogle Scholar
  49. 49.
    Grima JN et al (2007) Paper presented at the 4th international worksop on auxetics and related systems, Malta, Sept. 2007Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Joseph N. Grima
    • 1
    Email author
  • Pierre S. Farrugia
    • 1
  • Christian Caruana
    • 1
  • Ruben Gatt
    • 1
  • Daphne Attard
    • 1
  1. 1.Department of ChemistryUniversity of MaltaMsidaMalta

Personalised recommendations