Journal of Materials Science

, Volume 43, Issue 15, pp 5368–5375 | Cite as

Wear behavior of Al–Cu and Al–Cu/SiC components produced by powder metallurgy

  • Adel Mahamood HassanEmail author
  • Ahmad Turki Mayyas
  • Abdalla Alrashdan
  • Mohammed T. Hayajneh


In the present study, the dry sliding wear behavior of some powder metallurgy (P/M) Al–Mg–Cu alloys with different weight percentage of Cu (0, 1, 2, 3, 4, and 5 wt%) and corresponding metal matrix composites reinforced with 5 or 10 vol% silicon carbide particles (SiC) have been carried using pin-on-disk apparatus. The tested specimens were tested against hardened steel disk as a counter face at room conditions (∼20 °C and ∼50% relative humidity). The normal load was 40 N and sliding velocity of counter face disk was 150 rpm (0.393 m/s) and total testing time of 60 min, which corresponds to a distance of 1414 m. Generally, both hardness and wear resistance were enhanced by the addition of Cu and/or SiC to the Al-4 wt% Mg alloy. The formations of mechanically mixed layer (MML) as a result of material transfer from counter face disk to the samples and vice versa were observed in all tested specimens.


Wear Resistance Wear Rate Wear Surface Silicon Carbide Particle Mechanically Mixed Layer 



The authors gratefully acknowledge the assistance of the Committee of Scientific Research/Jordan University of Science and Technology for its support of this research (grant no. 29/2007). The authors would like also to gratefully acknowledge the use of Machine shop and the laboratory facilities at Jordan University of Science and Technology, Irbid, Jordan.


  1. 1.
    Abouelmagd G (2004) J Mater Process Technol 155–156:395. doi: Google Scholar
  2. 2.
    Ahlatci H, Kocer T, Candan E, Cimenoglu H (2006) Tribol Int 39:13CrossRefGoogle Scholar
  3. 3.
    Candan S, Bilgic E (2004) Mater Lett 58:2787. doi: CrossRefGoogle Scholar
  4. 4.
    Torralba JM, da Costa CE, Velasco F (2003) J Mater Process Technol 133:203. doi:–0136(02)00234-0 CrossRefGoogle Scholar
  5. 5.
    Eksi A, Saritas S (2002) Turk J Eng Environ Sci 26:377Google Scholar
  6. 6.
    Sawla S, Das S (2004) Wear 257:555. doi: CrossRefGoogle Scholar
  7. 7.
    Das S, Das S, Das K (2007) Compos Sci Technol 67:746. doi: CrossRefGoogle Scholar
  8. 8.
    Zhang S, Wang F (2007) J Mater Process Technol 182:122. doi: CrossRefGoogle Scholar
  9. 9.
    Ramachandra M, Radhakrishna K (2006) Mater Sci-Poland 24:334Google Scholar
  10. 10.
    Kim HS (1998) Mater Sci Eng A 251:100. doi: CrossRefGoogle Scholar
  11. 11.
    Yamagushi K, Takakura N, Imatani S (1997) J Mater Process Technol 63:346Google Scholar
  12. 12.
    Mondal DP, Das S (2006) Tribol Int 39:470. doi: CrossRefGoogle Scholar
  13. 13.
    Savaskan T, Hekimoglu AP, Gencaga P (2004) Tribol Int 37:45. doi: CrossRefGoogle Scholar
  14. 14.
    Kok M (2006) Composites A 37:457CrossRefGoogle Scholar
  15. 15.
    Kok M, Ozdin K (2007) J Mater Process Technol 183:301. doi: CrossRefGoogle Scholar
  16. 16.
    Muratoglu M, Aksoy M (2000) Mater Sci Eng A 282:91. doi: CrossRefGoogle Scholar
  17. 17.
    Natarajan N, Vijayarangan S, Rajendran I (2006) Wear 261:812. doi: CrossRefGoogle Scholar
  18. 18.
    Rodriguez J, Poza P, Garrido MA, Rico A (2007) Wear 262:292. doi: CrossRefGoogle Scholar
  19. 19.
    Ghazali MJ, Rainforth WM, Jones H (2005) Wear 250:490. doi: CrossRefGoogle Scholar
  20. 20.
    Ghazali MJ, Rainforth WM, Jones H (2007) Tribol Int 40:160CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Adel Mahamood Hassan
    • 1
    Email author
  • Ahmad Turki Mayyas
    • 1
  • Abdalla Alrashdan
    • 1
  • Mohammed T. Hayajneh
    • 1
  1. 1.Industrial Engineering Department, Faculty of EngineeringJordan University of Science and TechnologyIrbidJordan

Personalised recommendations