Advertisement

Journal of Materials Science

, Volume 43, Issue 19, pp 6400–6405 | Cite as

Effect of pulsed DC current on atomic diffusion of Nb–C diffusion couple

  • Takayuki Kondo
  • Masahide Yasuhara
  • Taku Kuramoto
  • Yasuhiro Kodera
  • Manshi OhyanagiEmail author
  • Zuhair A. Munir
Proceedings of the Symposium on Spark Plasma Synthesis and Sintering

Abstract

The effect of pulsed DC current on the atomic diffusion of an Nb–C system using Spark Plasma Sintering (SPS) was investigated. In all experiments, a current density of approximately 723 A/cm2 was applied to the specimen and used in a temperature range of 1,673–1,973 K. From the results of X-ray diffraction analysis, the product phases formed between Nb and C were found to be Nb2C and NbC. The growth of product layers significantly increased in the presence of current. However, the thickness of the product layer did not change in the current direction in the SPS. The activation energies for the formation of the Nb2C and NbC layers were calculated to be 298 ± 4 kJ/mol and 282 ± 3 kJ/mol in the presence of current, which were similar values compared to the activation energies of 300 ± 5 kJ/mol and 285 ± 2 kJ/mol in the absence of current, respectively.

Keywords

Spark Plasma Sinter Diffusion Couple Product Layer Atomic Diffusion Growth Rate Constant 

Notes

Acknowledgements

The authors acknowledge the partial support for this work by grant based on High-tech Research Center Program for private Universities from the Japan Ministry of Education, Culture, Sport, Science and Technology (MO).

References

  1. 1.
    Munir ZA, Anselmi-Tamburini U, Ohyanagi M (2006) J Mater Sci 41:763. doi: https://doi.org/10.1007/s10853-006-6555-2 CrossRefGoogle Scholar
  2. 2.
    Omori M (2000) Mater Sci Eng A 287:183. doi: https://doi.org/10.1016/S0921-5093(00)00773-5 CrossRefGoogle Scholar
  3. 3.
    Song X, Liu WX, Zhang J (2006) J Am Ceram Soc 89(2):494. doi: https://doi.org/10.1111/j.1551-2916.2005.00777.x CrossRefGoogle Scholar
  4. 4.
    Shen Z, Johnsson M, Zhao Z, Nygren M (2002) J Am Ceram Soc 85(8):1921CrossRefGoogle Scholar
  5. 5.
    Huntington HB, Grone AR (1961) J Chem Soli 20(1/2):76. doi: https://doi.org/10.1016/0022-3697(61)90138-X CrossRefGoogle Scholar
  6. 6.
    Liu W-C, Chen S-W, Chen C-M (1998) J Electron Mater 27(1):L5. doi: https://doi.org/10.1007/s11664-998-0338-2 CrossRefGoogle Scholar
  7. 7.
    Chen C-M, Chen S-W (1999) J Electron Mater 28:902. doi: https://doi.org/10.1007/s11664-999-0217-5 CrossRefGoogle Scholar
  8. 8.
    Du M-Y, Chen C-M, Chen S-W (2003) Mater Chem Phys 82:818. doi: https://doi.org/10.1016/j.matchemphys.2003.07.013 CrossRefGoogle Scholar
  9. 9.
    Chen S-W, Yen Y-W (1999) J Electron Mater 28:1203. doi: https://doi.org/10.1007/s11664-999-0158-z CrossRefGoogle Scholar
  10. 10.
    Chen C-M, Chen S-W (2000) J Electron Mater 29:1222. doi: https://doi.org/10.1007/s11664-000-0016-5 CrossRefGoogle Scholar
  11. 11.
    Bertolino N, Garay JE, Anselmi-Tamburini U, Munir ZA (2001) Scr Mater 44:737. doi: https://doi.org/10.1016/S1359-6462(00)00669-2 CrossRefGoogle Scholar
  12. 12.
    Frei JM, Anselmi-Tamburini U, Munir ZA (2007) J App Phys 101:114914/1CrossRefGoogle Scholar
  13. 13.
    Chen W, Anselmi-Tamburini U, Garay JE, Groza Jr, Munir ZA (2005) Mater Sci Eng A 394:132. doi: https://doi.org/10.1016/j.msea.2004.11.020 CrossRefGoogle Scholar
  14. 14.
    Anselmi-Tamburini U, Garay JE, Munir ZA (2005) Mater Sci Eng A 407:24. doi: https://doi.org/10.1016/j.msea.2005.06.066 CrossRefGoogle Scholar
  15. 15.
    Olevsky E, Froyen L (2006) Scr Mater 55:1175. doi: https://doi.org/10.1016/j.scriptamat.2006.07.009 CrossRefGoogle Scholar
  16. 16.
    Barzilai S, Raveh A, Frage N (2005) Vacuum 79:171. doi: https://doi.org/10.1016/j.vacuum.2005.03.005 CrossRefGoogle Scholar
  17. 17.
    Woodford J, Chang YA (1998) Metab Trans A 29A:2717. doi: https://doi.org/10.1007/s11661-998-0312-x CrossRefGoogle Scholar
  18. 18.
    Friedman JR, Garay JE, Anselmi-Tamburini U, Munir ZA (2004) Intermetallics 12:589. doi: https://doi.org/10.1016/j.intermet.2004.02.005 CrossRefGoogle Scholar
  19. 19.
    Schmidt FA, Carlson ON (1972) J Less Common Met 26:247. doi: https://doi.org/10.1016/0022-5088(72)90044-6 CrossRefGoogle Scholar
  20. 20.
    Garay JE, Anselmi-Tamburini U, Munir ZA (2003) Acta Mater 51:4487. doi: https://doi.org/10.1016/S1359-6454(03)00284-2 CrossRefGoogle Scholar
  21. 21.
    Garay JE, Glade SC, Anselmi-Tamburini U, Asoka-Kumar P, Munir ZA (2004) Appl Phys Lett 85:573. doi: https://doi.org/10.1063/1.1774268 CrossRefGoogle Scholar
  22. 22.
    Asoka-Kumar P, Simpson PJ, Rodbell KP (1996) Appl Phys Lett 68:406. doi: https://doi.org/10.1063/1.116700 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Takayuki Kondo
    • 1
  • Masahide Yasuhara
    • 1
  • Taku Kuramoto
    • 1
  • Yasuhiro Kodera
    • 1
  • Manshi Ohyanagi
    • 1
    Email author
  • Zuhair A. Munir
    • 2
  1. 1.Department of Materials Chemistry, Innovation Materials and Research CenterRyukoku UniversityOtsu ShigaJapan
  2. 2.Department of Chemical Engineering and Materials ScienceUniversity of CaliforniaDavisUSA

Personalised recommendations