Advertisement

Journal of Materials Science

, Volume 43, Issue 15, pp 5115–5122 | Cite as

Silver, gold and bimetallic nanoparticles production using single-cell protein (Spirulina platensis) Geitler

  • Kasivelu Govindaraju
  • Sabjan Khaleel Basha
  • Vijayakumar Ganesh Kumar
  • Ganesan SingaraveluEmail author
Article

Abstract

Interaction of single-cell protein of Spirulina platensis with aqueous AgNO3 and HAuCl4 was investigated for the synthesis of Ag, Au and Au core—Ag shell nanoparticles. Biological reduction and extracellular synthesis of nanoparticles were achieved in 120 h at 37 °C at pH 5.6. The nanometallic dispersions were characterized by surface plasmon absorbance measuring at 424 and 530 nm for Ag and Au nanoparticles, respectively. For bimetallic nanoparticles, absorption peak was observed at 509, 486 and 464 nm at 75:25, 50:50 and 25:75 (Au:Ag) mol concentrations, respectively. High-resolution transmission electron microscopy showed formation of nanoparticles in the range of 7–16 (silver), 6–10 (gold) and 17–25 nm (bimetallic 50:50 ratio). XRD analysis of the silver and gold nanoparticles confirmed the formation of metallic silver and gold. Fourier transform infrared spectroscopic measurements revealed the fact that the protein is the possible biomolecule responsible for the reduction and capping of the biosynthesized nanoparticles.

Keywords

Silver Nanoparticles Surface Plasmon Resonance Gold Nanoparticles HAuCl4 Blue Green Alga 

Notes

Acknowledgements

G.S. and K.G. thank the Department of Science and Technology (DST), New Delhi, Government of India, for financial assistance. The HR-TEM assistance of SAIF, IIT, Chennai, is gratefully acknowledged. The authors thank Prof. L. Kannan, Vice Chancellor, Thiruvalluvar University for his valuable comments.

References

  1. 1.
    Brust M, Kiely CJ (2002) Colloids Surf A Physicochem Eng Asp 202:175. doi: https://doi.org/10.1016/S0927-7757(01)01087-1 CrossRefGoogle Scholar
  2. 2.
    Kowshik M, Ashtaputre S, Kharrazi S, Vogel W, Urban J, Kulkarani SK et al (2003) Nanotechnology 14:95. doi: https://doi.org/10.1088/0957-4484/14/1/321 CrossRefGoogle Scholar
  3. 3.
    Huang H, Yang X (2005) Colloids Surf A Physicochem Eng Asp 255:11. doi: https://doi.org/10.1016/j.colsurfa.2004.12.020 CrossRefGoogle Scholar
  4. 4.
    Mandal S, Phadtare S, Sastry M (2005) Curr Appl Phys 5:118. doi: https://doi.org/10.1016/j.cap.2004.06.006 CrossRefGoogle Scholar
  5. 5.
    Wang C, Flynn NT, Langer R (2004) Adv Mater 16:1074. doi: https://doi.org/10.1002/adma.200306516 CrossRefGoogle Scholar
  6. 6.
    Nicewarner-Pena SR, Freeman RG, Reiss BD, He L, Pena J, Walton ID et al (2001) Science 294:137. doi: https://doi.org/10.1126/science.294.5540.137 CrossRefGoogle Scholar
  7. 7.
    Han M, Gao X, Su JZ, Nie S (2001) Nat Biotechnol 19:631. doi: https://doi.org/10.1038/90228 CrossRefGoogle Scholar
  8. 8.
    Joshi HM, Bhumkar DR, Kalpana J, Varsha P, Murali S (2006) Langmuir 22:300. doi: https://doi.org/10.1021/la051982u CrossRefGoogle Scholar
  9. 9.
    Zhilong Shi, Neoh KG, Kang ET (2004) Langmuir 20:6847. doi: https://doi.org/10.1021/la049132m CrossRefGoogle Scholar
  10. 10.
    Elechiguerra JL, Burt JL, Morones RJ, Camacho A, Gao X, Lara HH et al (2005) Nanobiotechnol 3:1. doi: https://doi.org/10.1186/1477-3155-3-1 CrossRefGoogle Scholar
  11. 11.
    Taton TA, Mirkin CA, Letsinger RL (2000) Science 289:1757. doi: https://doi.org/10.1126/science.289.5485.1757 CrossRefGoogle Scholar
  12. 12.
    Cao YC, Jin R, Mirkin CA (2002) Science 297:1536. doi: https://doi.org/10.1126/science.297.5586.1536 CrossRefGoogle Scholar
  13. 13.
    Sandhu KK, McIntosh CM, Simard JM, Smith SW, Rotello VM (2002) Bioconjugate Chem B 13:3. doi: https://doi.org/10.1021/bc015545c CrossRefGoogle Scholar
  14. 14.
    Gericke M, Pinches A (2006) Hydrometallurgy 83:132. doi: https://doi.org/10.1016/j.hydromet.2006.03.019 CrossRefGoogle Scholar
  15. 15.
    Mandal D, Bolander ME, Mukhopadhyay C, Sarkar G, Mukherjee P (2006) Appl Microbiol Biotechnol 69:485. doi: https://doi.org/10.1007/s00253-005-0179-3 CrossRefGoogle Scholar
  16. 16.
    Mann S (1993) Nature 365:499. doi: https://doi.org/10.1038/365499a0 CrossRefGoogle Scholar
  17. 17.
    Oliver S, Kuperman A, Coombs N, Lough A, Ozin GA (1995) Nature 378:47. doi: https://doi.org/10.1038/378047a0 CrossRefGoogle Scholar
  18. 18.
    Kroger N, Deutzmann R, Sumper M (1999) Science 286:1129. doi: https://doi.org/10.1126/science.286.5442.1129 CrossRefGoogle Scholar
  19. 19.
    Shankar SS, Rai A, Ankamwar B, Singh A, Ahmad A, Sastry M (2004) Nat Mater 3:482. doi: https://doi.org/10.1038/nmat1152 CrossRefGoogle Scholar
  20. 20.
    Shankar SS, Ahmad A, Pasricha R, Sastry M (2003) J Mater Chem 13:1822. doi: https://doi.org/10.1039/b303808b CrossRefGoogle Scholar
  21. 21.
    Shiv SS, Rai A, Ahmad A, Sastry M (2004) J Colloid Interface Sci 275:496. doi: https://doi.org/10.1016/j.jcis.2004.03.003 CrossRefGoogle Scholar
  22. 22.
    Shiv SS, Ahmed A, Sastry M (2003) Biotechnol Prog 19:1627. doi: https://doi.org/10.1021/bp034070w CrossRefGoogle Scholar
  23. 23.
    Prathap CS, Chaudhary M, Pasricha R, Ahmad A, Sastry M (2006) Biotechnol Prog 22:577. doi: https://doi.org/10.1021/bp0501423 CrossRefGoogle Scholar
  24. 24.
    Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X et al (2007) Nanotechnology 18:105104. doi: https://doi.org/10.1088/0957-4484/18/10/105104 CrossRefGoogle Scholar
  25. 25.
    Scarano G, Morelli E (2003) Plant Sci 165:803. doi: https://doi.org/10.1016/S0168-9452(03)00274-7 CrossRefGoogle Scholar
  26. 26.
    Konishi Y, Nomura T, Tsukiyama T, Saitoh N (2004) Trans Mater Res Soc Jpn 29:2341Google Scholar
  27. 27.
    Singaravelu G, Arockyamary JS, Ganesh Kumar V, Govindaraju K (2007) Colloids Surf B Biointerf 57:97. doi: https://doi.org/10.1016/j.colsurfb.2007.01.010 CrossRefGoogle Scholar
  28. 28.
    Gadd GM (1990) Experientia 46:834. doi: https://doi.org/10.1007/BF01935534 CrossRefGoogle Scholar
  29. 29.
    Kuyucak N, Volesky B, Raton FL (1990) Biosorption of heavy metals. CRC Press, Boca Raton, p 173Google Scholar
  30. 30.
    Bender J, Gould JP, Vatcharapijiarn Y, Young JS, Phillip S (1994) Water Environ Res 66:679CrossRefGoogle Scholar
  31. 31.
    Hameed A, Hasnain S (2005) Chin J Oceanol Limnol 23:433. doi: https://doi.org/10.1007/BF02842688 CrossRefGoogle Scholar
  32. 32.
    Gardea-Torresdey JL, Becker-Hapak KM, Hosea JM, Darnell DW (1990) Environ Sci Technol 19:1372. doi: https://doi.org/10.1021/es00079a011 CrossRefGoogle Scholar
  33. 33.
    Kaplan D, Christiaen D, Arad SM (1987) Appl Environ Microbiol 53:2953Google Scholar
  34. 34.
    Zhang W, Majidi V (1994) Environ Sci Technol 28:1577. doi: https://doi.org/10.1021/es00058a007 CrossRefGoogle Scholar
  35. 35.
    Ayehunie S, Belay A, Baba T, Ruprecht R (1998) J Acq Imm Differ Syn 18:7Google Scholar
  36. 36.
    Mulvaney P (1996) Langmuir 12:788. doi: https://doi.org/10.1021/la9502711 CrossRefGoogle Scholar
  37. 37.
    Caruso F, Furlong DN, Ariga K, Ichinose I, Kunitake T (1998) Langmuir 14:4559. doi: https://doi.org/10.1021/la971288h CrossRefGoogle Scholar
  38. 38.
    Van de Weert M, Haris PI, Hennink WE, Crommelin DJA (2001) Anal Biochem 297:160. doi: https://doi.org/10.1006/abio.2001.5337 CrossRefGoogle Scholar
  39. 39.
  40. 40.
    Philippis RD, Sili C, Paperi R, Vincenzini M (2001) J Appl Phycol 13:293. doi: https://doi.org/10.1023/A:1017590425924 CrossRefGoogle Scholar
  41. 41.
    Gardea-Torresdey JL, Aarenas JI, Webb R, Fransisco NMC, Tieman KJ (1997) J Hazard Subst Res 3:1Google Scholar
  42. 42.
    Gole A, Dash CV, Ramachandran V, Mandale AB, Sainkar SR, Rao M et al (2001) Langmuir 17:1674. doi: https://doi.org/10.1021/la001164w CrossRefGoogle Scholar
  43. 43.
    Selvakannan PR, Mandal S, Phadtare S, Renu Pasricha, Sastry M (2003) Langmuir 19:3545. doi: https://doi.org/10.1021/la026906v CrossRefGoogle Scholar
  44. 44.
    Nair B, Pradeep T (2002) Cryst Growth Des 2:293. doi: https://doi.org/10.1021/cg0255164 CrossRefGoogle Scholar
  45. 45.
    Senapati S, Ahmad A, Khan MI, Sastry M, Kumar R (2005) Small 1:517. doi: https://doi.org/10.1002/smll.200400053 CrossRefGoogle Scholar
  46. 46.
    Hu Y, Li C, Gu F, Zhao Y (2007) J Alloy Comp 432:L5. doi: https://doi.org/10.1016/j.jallcom.2006.05.134 CrossRefGoogle Scholar
  47. 47.
    Han SW, Kim Y, Kim K (1998) J Colloid Interface Sci 208:272. doi: https://doi.org/10.1006/jcis.1998.5812 CrossRefGoogle Scholar
  48. 48.
    Macdonald IDG, Smith WE (1996) Langmuir 12:706. doi: https://doi.org/10.1021/la950256w CrossRefGoogle Scholar
  49. 49.
    Keating CD, Kovaleski KK, Natan MJ (1998) J Phys Chem B 102:9414. doi: https://doi.org/10.1021/jp982724r CrossRefGoogle Scholar
  50. 50.
    Kumar CV, McLendon GL (1997) Chem Mater 9:863. doi: https://doi.org/10.1021/cm960634y CrossRefGoogle Scholar
  51. 51.
    Gole A, Dash C, Sainkar SR, Mandale AB, Rao M, Sastry M (2000) Anal Chem 72:1401. doi: https://doi.org/10.1021/ac000099s CrossRefGoogle Scholar
  52. 52.
    Ahmed A, Mukherjee P, Senapati S, Mandal D, Islam Khan M, Kumar R et al (2003) Colloids Surf B 28:313. doi: https://doi.org/10.1016/S0927-7765(02)00174-1 CrossRefGoogle Scholar
  53. 53.
    Panigrahi S, Kundu S, Ghosh SK, Sudip Nath, Pal T (2005) Colloids Surf A 264:133. doi: https://doi.org/10.1016/j.colsurfa.2005.04.017 CrossRefGoogle Scholar
  54. 54.
    Wang S, Shi G (2007) Mater Chem Phys 102:255. doi: https://doi.org/10.1016/j.matchemphys.2006.12.014 CrossRefGoogle Scholar
  55. 55.
    Schmid G (1994) Clusters and colloids. VCH, WeinheimCrossRefGoogle Scholar
  56. 56.
    Toshima N, Yonezawa (1998) J Chem 11:1179Google Scholar
  57. 57.
    Malin MP, Murphy CJ (2002) Nano Lett 2:1235. doi: https://doi.org/10.1021/nl025774n CrossRefGoogle Scholar
  58. 58.
    Ah CS, Hong SD, Jang DJ (2001) J Phys Chem B 105:7871. doi: https://doi.org/10.1021/jp0113578 CrossRefGoogle Scholar
  59. 59.
    Mallik K, Mandal M, Pradhan N, Pal T (2001) Nano Lett 1:319. doi: https://doi.org/10.1021/nl0100264 CrossRefGoogle Scholar
  60. 60.
    Cao YW, Jin R, Mirkin CA (2001) J Am Chem Soc 123:7961. doi: https://doi.org/10.1021/ja011342n CrossRefGoogle Scholar
  61. 61.
    Caruso F (2001) Adv Mater 13:11. doi :10.1002/1521-4095(200101)13:1≤11::AID-ADMA11≥3.0.CO;2-NCrossRefGoogle Scholar
  62. 62.
    Schmid G (1992) Chem Rev 92:1709. doi: https://doi.org/10.1021/cr00016a002 CrossRefGoogle Scholar
  63. 63.
    III Aiken JD, Finke RG (1999) J Mol Catal A 145:1. doi: https://doi.org/10.1016/S1381-1169(99)00098-9 CrossRefGoogle Scholar
  64. 64.
    Henglein (1993) J Phys Chem 97:457Google Scholar
  65. 65.
    Srnova-Sloufova I, Vickova B, Bastl Z, Hasslett TL (2004) Langmuir 20:3407. doi: https://doi.org/10.1021/la0302605 CrossRefGoogle Scholar
  66. 66.
    Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley, New YorkGoogle Scholar
  67. 67.
    Rai A, Chaudhary M, Ahmed A, Bhargava S, Sastry M (2007) Mater Res Bull 42:1212. doi: https://doi.org/10.1016/j.materresbull.2006.10.019 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Kasivelu Govindaraju
    • 1
  • Sabjan Khaleel Basha
    • 1
  • Vijayakumar Ganesh Kumar
    • 2
  • Ganesan Singaravelu
    • 1
    Email author
  1. 1.Department of ZoologyThiruvalluvar UniversityVelloreIndia
  2. 2.Nanoscience Division, Centre for Ocean ResearchSathyabama UniversityChennaiIndia

Personalised recommendations