Journal of Materials Science

, Volume 43, Issue 14, pp 5023–5027 | Cite as

Grain size control by pressure application regime during spark plasma sintering of Nd-YAG nanopowders

  • Rachman Chaim
  • Zhijian Shen

Recently, spark plasma sintering (SPS) has successfully been used for fabrication of fully dense and transparent oxides [1, 2, 3, 4] and nanocrystalline ceramics [5, 6, 7, 8]. It was both experimentally [9] and theoretically [10, 11] shown that application of high pressures in SPS may enhance the densification rate at lower temperatures, and hence preserve the nano gain size character of the dense ceramic. Nevertheless, grain growth was found to be an inevitable process in SPS, especially at the final stages of sintering/densification. The driving force for grain growth in pure materials is the grain boundary (gb) curvature [12]. More homogeneous particle size and shape are expected to decrease this driving force. Therefore, control of the nanostructure green compact prior to and during the SPS process via the processing parameters may be beneficial for controlling the final grain size. In the present work, we examined the effect of the pressure application regime on densification and...


Spark Plasma Sinter Sintered Specimen Nanocrystalline Powder Dense Compact Dense Specimen 



The support of the Israel Ministry of Defense and the Fund for Promotion of Research at the Technion and the Swedish Research Council through grant 621-2005-6299 are gratefully acknowledged.


  1. 1.
    Chaim R, Shen Z, Nygren M (2004) J Mater Res 19:2527. doi: CrossRefGoogle Scholar
  2. 2.
    Kim BN, Hiraga K, Morita K, Yoshida H (2007) Scr Mater 57:607. doi: CrossRefGoogle Scholar
  3. 3.
    Chaim R, Marder-Jaekel R, Shen JZ (2006) Mater Sci Eng A 429:74. doi: CrossRefGoogle Scholar
  4. 4.
    Jiang D, Hilbert DM, Kuntz JD, Anselmi-Tamburini U, Mukherjee AK (2007) Mater Sci Eng A 463:89CrossRefGoogle Scholar
  5. 5.
    Nygren M, Shen Z (2003) Solid State Sci 5:125. doi: CrossRefGoogle Scholar
  6. 6.
    Mishra RS, Risbud SH, Mukherjee AK (1998) J Mater Res 13:86. doi: CrossRefGoogle Scholar
  7. 7.
    Li W, Gao L (2000) J Eur Ceram Soc 20:2441. doi: CrossRefGoogle Scholar
  8. 8.
    Wang L, Jiang W, Chen L (2004) J Mater Sci 39:4515. doi: CrossRefGoogle Scholar
  9. 9.
    Anselmi-Tamburini U, Garay JE, Munir ZA (2006) Scr Mater 54:823. doi: CrossRefGoogle Scholar
  10. 10.
    Munir ZA, Anselmi-Tamburini U, Ohyanagi M (2006) J Mater Sci 41:763. doi: CrossRefGoogle Scholar
  11. 11.
    Chaim R, Margulis M (2005) Mater Sci Eng A 407:180. doi: CrossRefGoogle Scholar
  12. 12.
    Kang SJL (2005) Sintering densification grain growth & microstructure. Elsevier, OxfordGoogle Scholar
  13. 13.
    Rahaman MN (2007) Ceramic processing. CRC Press, Boca RatonGoogle Scholar
  14. 14.
    King BH, Halloran JW (1995) J Am Ceram Soc 78:2141. doi: CrossRefGoogle Scholar
  15. 15.
    Chaim R (2006) J Mater Sci 41:7862. doi: CrossRefGoogle Scholar
  16. 16.
    Chaim R (2007) Mater Sci Eng A 443:25. doi: CrossRefGoogle Scholar
  17. 17.
    Blumenthal WR, Philips DS (1996) J Am Ceram Soc 79:1047. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Materials EngineeringTechnion-Israel Institute of TechnologyHaifaIsrael
  2. 2.Department of Inorganic ChemistryArrhenius Laboratory, Stockholm UniversityStockholmSweden

Personalised recommendations