Advertisement

Journal of Materials Science

, Volume 43, Issue 14, pp 4988–4995 | Cite as

A study into first and second order thermal transitions of materials using Spectral-DSC

  • O. R. Ghita
  • M. A. BeardEmail author
  • J. McCabe
  • R. Bottom
  • J. Richmond
  • K. E. Evans
Article

Abstract

Thermal and spectral analysis is conducted routinely to characterise a large range of materials and compounds. However, tests are often conducted independently on separate samples where comparison between essentially the same material can provide conflicting results. Simultaneous thermal and spectral measurements have the advantage of being able to directly compare results using the same sample. A novel design of a simultaneous thermal and spectral technique is described along with application examples that highlight the benefits of this technique. The thermal analysis was conducted using Differential Scanning Calorimetry (DSC) and the in situ spectral analysis was conducted using a Fourier Transform Near Infrared (FT-NIR) spectrometer. Two examples are used to illustrate the versatility and potential advantages of the combined thermal and spectral method. Analysis of the first and second order transitions of polyethylene terephthalate (PET) is presented along with the pharmaceutical polymorphic conversion of carbamazepine from Form III to Form I through an isothermal hold at 160 °C.

Keywords

Differential Scanning Calorimetry Carbamazepine Trigeminal Neuralgia Polymorphic Form Near Infrared Spectroscopy 

Notes

Acknowledgement

The authors would like to thank the Technology Strategy Board (TSB), Bruker Optics UK, Mettler-Toledo UK and AstraZeneca for their support of the ADSC/NIR screening technique project (tf/Nov04/nano/00234).

References

  1. 1.
    Mirabella FM Jr (1986) Appl Spectrosc 40:417. doi: https://doi.org/10.1366/0003702864509222 CrossRefGoogle Scholar
  2. 2.
    Mirabella FM Jr (1990) Adv Chem Ser 227:357CrossRefGoogle Scholar
  3. 3.
    Koberstein JT, Gancarz I, Clarke TC (1986) J Polym Sci Part Polym Phys 24:2487. doi: https://doi.org/10.1002/polb.1986.090241107 CrossRefGoogle Scholar
  4. 4.
    Debakker CJ, St John NA, George GA (1992) Am Chem Soc Polym Chem Div 33:374Google Scholar
  5. 5.
    Sprunt JC, Jayasooriya UA (1997) Appl Spectrosc 51(9):1410. doi: https://doi.org/10.1366/0003702971942132 CrossRefGoogle Scholar
  6. 6.
    Torres N, Robin JJ, Boutevin B (2000) Eur Polym J 36:2075. doi: https://doi.org/10.1016/S0014-3057(99)00301-8 CrossRefGoogle Scholar
  7. 7.
    Alves NM, Mano JF, Balaguer E, Meseguer Duenas JM, Gomez Ribelles JL (2002) Polymer (Guildf) 43:4111. doi: https://doi.org/10.1016/S0032-3861(02)00236-7 CrossRefGoogle Scholar
  8. 8.
    Schawe JKE (2007) Thermochim Acta 461:145. doi: https://doi.org/10.1016/j.tca.2007.05.017 CrossRefGoogle Scholar
  9. 9.
    Atkinson JR, Biddlestone F, Hay JN (2000) Polymer (Guildf) 41:6965. doi: https://doi.org/10.1016/S0032-3861(00)00017-3 CrossRefGoogle Scholar
  10. 10.
    Compton DAC, Johnson DJ, Powell JR (1993) Structure-property relations in polymers: spectroscopy and performance. American Chemical SocietyGoogle Scholar
  11. 11.
    Wiedemann HG (1993) J Therm Anal 40:1031. doi: https://doi.org/10.1007/BF02546863 CrossRefGoogle Scholar
  12. 12.
    Rustichelli C, Gamberini G, Ferioli V, Gamberini MC, Ficarra R, Tommasini S (2000) J Pharm Biomed Anal 23:41. doi: https://doi.org/10.1016/S0731-7085(00)00262-4 CrossRefGoogle Scholar
  13. 13.
    Kobayashi Y, Ito S, Itai S, Yamamoto K (2000) Int J Pharm 193:137. doi: https://doi.org/10.1016/S0378-5173(99)00315-4 CrossRefGoogle Scholar
  14. 14.
    Lang M, Kampf JW, Matzger AJ (2002) J Pharm Sci 91(4):1186. doi: https://doi.org/10.1002/jps.10093 CrossRefGoogle Scholar
  15. 15.
    Grzesiak AL, Lang M, Kim K, Matzger AJ (2003) J Pharm Sci 92(11):2260. doi: https://doi.org/10.1002/jps.10455 CrossRefGoogle Scholar
  16. 16.
    Papadopoulou CP, Kalfoglou NK (2000) Polymer (Guildf) 41:2543. doi: https://doi.org/10.1016/S0032-3861(99)00442-5 CrossRefGoogle Scholar
  17. 17.
    Alves NM, Mano JF, Gomez Ribelles JL (2002) Polymer (Guildf) 43:3624Google Scholar
  18. 18.
    Silva Spinace MA, Lucato MU, Ferrao MF, Davanzo CU, De Paoli M-A (2006) Talanta 69:643. doi: https://doi.org/10.1016/j.talanta.2005.10.035 CrossRefGoogle Scholar
  19. 19.
    Yoshii T, Yoshida H, Kawai T (2005) Thermochim Acta 431:177. doi: https://doi.org/10.1016/j.tca.2005.01.070 CrossRefGoogle Scholar
  20. 20.
    Dumitrescu OR, Baker DC, Foster G, Evans KE (2005) Polym Test 24:367. doi: https://doi.org/10.1016/j.polymertesting.2004.10.003 CrossRefGoogle Scholar
  21. 21.
    Uchegbu LF, Schätzlein AG (2006) Polymers in drug delivery. CRC PressGoogle Scholar
  22. 22.
    O’Brien LE, Timmins P, Williams AC, York P (2004) J Pharm Biomed Anal 36:335. doi: https://doi.org/10.1016/j.jpba.2004.06.024 CrossRefGoogle Scholar
  23. 23.
    Hilfiker R, Berghausen J, Blatter F, Burkhard A, De Paul SM, Freiermuth B et al (2003). J Therm Anal Calorim 73:429. doi: https://doi.org/10.1023/A:1025409608944 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • O. R. Ghita
    • 1
  • M. A. Beard
    • 1
    Email author
  • J. McCabe
    • 2
  • R. Bottom
    • 3
  • J. Richmond
    • 4
  • K. E. Evans
    • 1
  1. 1.School of Engineering, Computing and MathematicsUniversity of ExeterExeter, DevonUK
  2. 2.AstraZenecaMacclesfieldUK
  3. 3.Mettler-ToledoLeicesterUK
  4. 4.Bruker OpticsCoventryUK

Personalised recommendations