Journal of Materials Science

, Volume 43, Issue 19, pp 6429–6434 | Cite as

Thermal and mechanical properties of uranium nitride prepared by SPS technique

  • Hiroaki MutaEmail author
  • Ken Kurosaki
  • Masayoshi Uno
  • Shinsuke Yamanaka
Proceedings of the Symposium on Spark Plasma Synthesis and Sintering


Nitride fuel is a promising nuclear fuel in fast breeder reactor (FBR) or accelerator-driven subcritical reactor (ADSR) system. In this study, high-density UN pellets were prepared by Spark plasma sintering (SPS) technique. The sample density strongly depended on the sintering temperature and pressure, and the pellets with 90% of theoretical density were easily obtained with low sintering temperature and short sintering time without any milling process. The grain size and pore size were much smaller compared with those for samples prepared by conventional sintering process. Despite of the small grain size, the thermal conductivity remains the high value. The SPS process permits easy densification of nitrides without any deterioration of thermal and mechanical properties, considered to be suitable as a preparation method of nitride fuels.


Sinter Temperature Spark Plasma Sinter Grain Orientation Americium Sinter Time 



The authors deeply appreciate Dr. J. Adachi for his assistance of EBSP analysis and porosity observation. Present study is the result of “Development of advanced nuclear fuels prepared by Spark plasma sintering” entrusted to Osaka university by the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT).


  1. 1.
    Osaka M, Serizawa H, Kato M, Nakajima K, Tachi Y, Kitamura R et al (2007) J Nucl Sci Technol 44:309. doi: CrossRefGoogle Scholar
  2. 2.
    Arai Y, Iwai T, Nakajima K (1997) Proc Int Conf GLOBAL ‘97, Yokohama, Japan, p 664Google Scholar
  3. 3.
  4. 4.
    Ogawa T (1998) J Alloy Comp 271–273:347. doi: CrossRefGoogle Scholar
  5. 5.
    Matsui T, Ohse RW (1987) High Temp High Press 19:1Google Scholar
  6. 6.
    Takano M, Itoh A, Akabori M (2001) J Nucl Mater 294:24. doi: CrossRefGoogle Scholar
  7. 7.
    Itoh A, Akabori M, Takano M (2002) J Nucl Sci Technol Suppl 3:737CrossRefGoogle Scholar
  8. 8.
    Nakajima K, Arai Y (2002) J Nucl Sci Technol Suppl 3:620CrossRefGoogle Scholar
  9. 9.
    Risbud SH, Shan CH (1995) Mater Sci Eng A 204:146. doi: CrossRefGoogle Scholar
  10. 10.
    Omori M (2000) Mater Sci Eng A 287:183. doi: CrossRefGoogle Scholar
  11. 11.
    Li MJ, Zhang LM, Shen Q, Li T, Yu MQ (2006) J Mater Sci 41:7934. doi: CrossRefGoogle Scholar
  12. 12.
    Urbonaite S, Johnsson M, Svensson G (2004) J Mater Sci 39:1907. doi: CrossRefGoogle Scholar
  13. 13.
    Tshuchida T, Yamamoto S (2007) J Mater Sci 42:772. doi: CrossRefGoogle Scholar
  14. 14.
    Kaga Y, Jones MI, Hirao K, Kanzaki S (2007) J Mater Sci 42:699. doi: CrossRefGoogle Scholar
  15. 15.
    Hayes SL, Thomas JK, Peddicord KL (1990) J Nucl Mater 171:289. doi: CrossRefGoogle Scholar
  16. 16.
    Ross SB, El-Genk MS, Matthews RB (1990) J Nucl Mater 170:169. doi: CrossRefGoogle Scholar
  17. 17.
    Arai Y, Morihira M, Ohmichi T (1993) J Nucl Mater 202:70. doi: CrossRefGoogle Scholar
  18. 18.
    Hayes SL, Thomas JK, Peddicord KL (1990) J Nucl Mater 171:271. doi: CrossRefGoogle Scholar
  19. 19.
    Padel A, De Novion C (1969) J Nucl Mater 33:40. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Hiroaki Muta
    • 1
    Email author
  • Ken Kurosaki
    • 1
  • Masayoshi Uno
    • 1
  • Shinsuke Yamanaka
    • 1
  1. 1.Division of Sustainable Energy and Environmental Engineering, Graduate School of EngineeringOsaka UniversityOsakaJapan

Personalised recommendations