Journal of Materials Science

, Volume 43, Issue 14, pp 4962–4971 | Cite as

Orientation of silicon particles in a binary Al–Si alloy

  • C. D. MarioaraEmail author
  • S. J. Andersen
  • A. Birkeland
  • R. Holmestad


The orientations Si-crystals take in aluminium, in an alloy with composition Al–1.3at%Si, were investigated by transmission electron microscopy. Hardness was measured for isothermal heat-treatments at 175 °C and 260 °C. Conditions analysed by TEM were 17 h at 175 °C and an additional 3 h at 260 °C, both containing a high density of small Si-crystals, the finest corresponding to 175 °C. Two main orientation relationships were found: \((001)\hbox{Al}\,||\,(001)\text{Si}, [100]\hbox{Al}\,||\,[100]\text{Si} \hbox{ and } (001)\hbox{Al}\,||\,(110)\text{Si}, [1\;\overline{1}\;\overline{1}] \text{Si}\,||\,[010]\text{Al}.\) The first accounted for approximately 60% of Si precipitates in condition 17 h_175 °C. Despite a high number density and well-aligned interfaces, the Si precipitates have negligible influence on hardness. Findings are consistent with Ge particles in Al–Ge alloys.


Orientation Relation Angular Separation Periodic Match Zone Axis Parallel Diamond Silicon 



This work was financially supported by The Research Council of Norway via two projects: 177600/V30 “Fundamental investigations of solute clustering and nucleation of precipitation” and project 176816/I40 “Nucleation control for optimised properties”, which is also supported by Hydro Al and Steertec Raufoss AS.


  1. 1.
    Marioara CD, Andersen SJ, Zandbergen HW, Holmestad R (2005) Metall Mater Trans 36A:691Google Scholar
  2. 2.
    Edwards GA, Stiller K, Dunlop GL, Couper MJ (1998) Acta Mater 46:3893CrossRefGoogle Scholar
  3. 3.
    Andersen SJ, Marioara CD, Vissers R, Frøseth A, Zandbergen HW (2007) Mat Sci Eng A 444:157CrossRefGoogle Scholar
  4. 4.
    Marioara CD, Andersen SJ, Stene TN, Hasting H, Walmsley J, Van Helvoort ATJ, Holmestad R (2007) Phil Mag 87:3385CrossRefGoogle Scholar
  5. 5.
    Douin J, Dahmen U, Westmacott KH (1991) Phil Mag B 63:867CrossRefGoogle Scholar
  6. 6.
    Hinderberger S, Xiao SQ, Westmacott KH, Dahmen U (1996) Z Mettalkd 87:161Google Scholar
  7. 7.
    Xiao SQ, Hinderberger S, Westmacott KH, Dahmen U (1996) Phil Mag A 73:1261CrossRefGoogle Scholar
  8. 8.
    Hinderberger S, Dahmen U, Xiao SQ, Westmacott KH (2000) Z Mettalkd 91:215Google Scholar
  9. 9.
    Mitlin D, Radmilovic V, Dahmen U, Morris JW Jr (2001) Metall Mater Trans 32A:197CrossRefGoogle Scholar
  10. 10.
    Mitlin D, Dahmen U, Radmilovic V, Morris JW Jr (2001) Mat Sci Eng A 301:231CrossRefGoogle Scholar
  11. 11.
    Radmilovic V, Dahmen U, Dracup B, Miller MK, Mitlin D, Morris JW (2002) Mater Sci For 396–402:905Google Scholar
  12. 12.
    Mitlin D, Radmilovic V, Morris JW Jr, Dahmen U (2003) Metall Mater Trans 34A:735Google Scholar
  13. 13.
    Radmilovic V, Mitlin D, Tolley AJ, Dahmen U, Morris JW Jr (2003) Metall Mater Trans 34A:543CrossRefGoogle Scholar
  14. 14.
    Radmilovic V, Miller MK, Mitlin D, Dahmen U (2006) Scr Mater 54:1973CrossRefGoogle Scholar
  15. 15.
    Kaneko K, Inoke K, Sato K, Kitawaki K, Higashida H, Arslan I, Midgley PA (2008) Ultramicr 108:210CrossRefGoogle Scholar
  16. 16.
    Marioara CD, Nordmark H, Andersen SJ, Holmestad R (2006) J Mater Sci 41:471CrossRefGoogle Scholar
  17. 17.
    Hornbogen E, Mukhopadhyay AK, Starke EA Jr (1992) Z Metallkd 83:577Google Scholar
  18. 18.
    Matsuda K, Tada S, Ikeno S (1994) J Jpn Inst Metals 58:252CrossRefGoogle Scholar
  19. 19.
    Williams DB, Carter CB (1996) Transmission Electron Microscopy. Plenum Press, New York, p 445CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • C. D. Marioara
    • 1
    Email author
  • S. J. Andersen
    • 1
  • A. Birkeland
    • 2
  • R. Holmestad
    • 2
  1. 1.SINTEF Materials and ChemistryTrondheimNorway
  2. 2.Department of PhysicsNorwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations