Advertisement

Journal of Materials Science

, Volume 43, Issue 14, pp 4953–4961 | Cite as

Young’s modulus of low-pressure cold sprayed composites: an analysis based on a minimum contact area model

  • Mark LubrickEmail author
  • R. Gr. Maev
  • F. Severin
  • V. Leshchynsky
Article

Abstract

A theoretical and mathematical model based on minimum contact area (MCA) is developed to explain the bonding that takes place in the low-pressure gas dynamic spray (LPGDS) process. It is shown that by normalizing this MCA it is possible to compare the relative elastic modulus as a function of porosity. Theoretical predictions of relative elastic modulus are compared against results obtained through acoustic analysis and it is found that the correlation between is dependent on the porosity. For low porosity, the experimental and theoretical results differ substantially, while for higher porosity there seems to be good agreement between the two. To explain this behaviour it is theorized that full adiabatic shear bands (ASB) are created between only some of the particles. The higher porosity causes higher strain in the samples and thus more local deformation of the particles. This, in turn, causes more actual ASB formation. Since the theoretical model assumes full ASB formation, only the higher porosities cause enough strain to have a comparable relative elastic modulus. For the lower porosities, the local strain is less, and some of the bonds will not achieve full ASB formation. For these cases, the relative elastic modulus will be lower than that predicted.

Keywords

Reinforcement Particle Friction Welding Adiabatic Shear Band Explosive Welding Adiabatic Shear Instability 

References

  1. 1.
    Alkimov AP, Kosarev VE, Papyrin AN (1990) Dokl Akad Nauk SSSR 318:1062Google Scholar
  2. 2.
    Borchers C, Gartner F, Stoltenhoff, Kreye H (2003) J Appl Phys 12 93(2):10064Google Scholar
  3. 3.
    Borchers C, Gartner F, Stoltenhoff T, Kreye H (2005) Acta Mater 53:2991. doi: https://doi.org/10.1016/j.actamat.2005.02.048 CrossRefGoogle Scholar
  4. 4.
    Meyers MA, Benson DJ, Olevsky EA (1999) Acta mater 47(7):2089CrossRefGoogle Scholar
  5. 5.
    Prummer R (1987) Explosivverdichting Pulvriger Substanzen Grundlagen Verfahrenergebnisse (Springer, Berlin), in GermanGoogle Scholar
  6. 6.
    Maev GrR, Leshchinsky Ev (2006) In: International thermal spray conference proceedings, Seattle, USA, 2006, CD ProceedingGoogle Scholar
  7. 7.
    Contreras A, Albiter A, Bedolla E, Perez R (2004) Adv Eng Mater 6(9):767CrossRefGoogle Scholar
  8. 8.
    CenterLine (Windsor) Limited, https://doi.org/www.cntrline.com, as on 07 June 2007
  9. 9.
    Tanga F, Meeks H, Spowart JE, Gnaeupel-Herold T, Prask H, Anderson IE (2004) Mater Sci Eng A 386:194CrossRefGoogle Scholar
  10. 10.
    Kouzeli M, Mortensen A (2002) Acta Mater 50:39. doi: https://doi.org/10.1016/S1359-6454(01)00327-5 CrossRefGoogle Scholar
  11. 11.
    Orrhede M, Tolani R, Salama K (1996) Res Nondestr Eval 8:23CrossRefGoogle Scholar
  12. 12.
    Peng HX, Fan Z, Evans JRG (2001) Mater Sci Eng A 303:37. doi: https://doi.org/10.1016/S0921-5093(00)01879-7 CrossRefGoogle Scholar
  13. 13.
    Green DJ (1998) In: An introduction to the mechanical properties of ceramics. Cambridge University Press, 336 ppGoogle Scholar
  14. 14.
    Mackenzie JK (1950) Proc Phys Soc Lond B63:2–11CrossRefGoogle Scholar
  15. 15.
    Mizusaki J, Tsuchiya S, Waragai K, Tagawa H, Arai Yo, Kuwayama Y (1996) J Am Ceram Soc 79(1):109CrossRefGoogle Scholar
  16. 16.
    Maeva E, Aczel A, Leshchinsky Ev (2006) Adiabatic shear band formation in the gas dynamic spray process. J Mater Charact (submitted)Google Scholar
  17. 17.
    Mukhopadhyay AK, Phani KK (1998) J Mater Sci 33:69. doi: https://doi.org/10.1023/A:1004385327370 CrossRefGoogle Scholar
  18. 18.
    Mukhopadhyay AK, Phani KK (2000) J Am Ceram Soc 20:29. doi: https://doi.org/10.1016/S0955-2219(99)00092-8 CrossRefGoogle Scholar
  19. 19.
    Martin LP, Rosin M (1997) J Am Ceram Soc 80:839CrossRefGoogle Scholar
  20. 20.
    Papyrin AN, Kosarev VF, Klinkov SV, Alkhimov AP (2002) In: Proceedings of the international thermal spray conference, Dusseldorf, Germany, pp 380–386Google Scholar
  21. 21.
    Van Steenkiste TH, Smith JR, Teets RE (2002) Surf Coat Technol 154:237. doi: https://doi.org/10.1016/S0257-8972(02)00018-X CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Mark Lubrick
    • 1
    Email author
  • R. Gr. Maev
    • 1
  • F. Severin
    • 1
  • V. Leshchynsky
    • 1
  1. 1.University of WindsorWindsorCanada

Personalised recommendations