Advertisement

Journal of Materials Science

, Volume 43, Issue 23–24, pp 7426–7431 | Cite as

Crack growth in ultrafine-grained AA6063 produced by equal-channel angular pressing

  • Lothar W. Meyer
  • Kristin SommerEmail author
  • Thorsten Halle
  • Matthias Hockauf
Ultrafine-Grained Materials

Abstract

Crack growth behaviour of ultrafine-grained AA6063, processed by equal-channel angular pressing (ECAP) via route E at room temperature, was evaluated with special emphasis on the effect of grain size distribution and work hardening. A bimodal, two times ECAPed condition and a monomodal ultrafine-grained condition after eight ECAP passes are compared with the coarse grained peak aged material. Depending on their microstructure, the ECAPed materials show significantly lower fatigue threshold values (ΔKth) and higher crack growth rates (da/dN) than their coarse grained counterparts. Micrographs of the crack propagation surfaces reveal the reduced grain size as major key to increased crack growth rates of the ECAPed material, as it influences roughness-induced crack closure and crack deflections. Furthermore, the effects of other features, such as ductility, work hardening capability and grain boundary characteristics, are discussed.

Keywords

Crack Growth Rate Fatigue Crack Growth High Cycle Fatigue Crack Growth Behaviour High Cycle Fatigue 

Notes

Acknowledgements

The authors thank the „Deutsche Forschungsgemeinschaft“ for supporting this research within the framework of „Sonderforschungsbereich 692“.

References

  1. 1.
    Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103. doi: https://doi.org/10.1016/S0079-6425(99)00007-9 CrossRefGoogle Scholar
  2. 2.
    Horita Z, Fujinami T, Nemoto M, Langdon TG (2001) J Mater Process Tech 117:288. doi: https://doi.org/10.1016/S0924-0136(01)00783-X CrossRefGoogle Scholar
  3. 3.
    Höppel HW, Xu C, Kautz M, Barta-Schreiber N, Langdon TG, Mughrabi H (2004) In: Proc. of Int. Conf. Nanomaterials by Severe plastic deformation-NANOSPD. Wiley-VCH, WeinheimGoogle Scholar
  4. 4.
    Mughrabi H, Höppel HW, Kautz M (2004) Scripta Mater 51:807. doi: https://doi.org/10.1016/j.scriptamat.2004.05.012 CrossRefGoogle Scholar
  5. 5.
    Vinogradov A, Washikita K, Kitagawa K, Kopylov VI (2003) Mater Sci Eng A 349:318. doi: https://doi.org/10.1016/S0921-5093(02)00813-4 CrossRefGoogle Scholar
  6. 6.
    Patlan V, Vinogradov A, Higashi K, Kitagawa K (2001) Mater Sci Eng A 300:171. doi: https://doi.org/10.1016/S0921-5093(00)01682-8 CrossRefGoogle Scholar
  7. 7.
    Vinogradov A, Nagasaki S, Patlan V, Kitagawa K, Kawazoe N (1999) Nanostruct Mater 11:925. doi: https://doi.org/10.1016/S0965-9773(99)00392-X CrossRefGoogle Scholar
  8. 8.
    Vinogradov A (2007) J Mater Sci 42:1797. doi: https://doi.org/10.1007/s10853-006-0973-z CrossRefGoogle Scholar
  9. 9.
    Chung CS, Kim JK, Kim HK, Kim WJ (2002) Mater Sci Eng A 337:39. doi: https://doi.org/10.1016/S0921-5093(02)00010-2 CrossRefGoogle Scholar
  10. 10.
    Kießling R, Hübner P, Biermann H (2006) Materialprüfung 48:547Google Scholar
  11. 11.
    Turnbull A, de los Rios ER (1995) Fatigue Fract Eng Mater Struct 18:1355CrossRefGoogle Scholar
  12. 12.
    Hockauf M, Meyer LW, Halle T, Kuprin C, Hietschold M, Schulze S et al (2006) Int J Mat Res 97:1392CrossRefGoogle Scholar
  13. 13.
    Barber RE, Dudo T, Yasskin PB, Hartwig KT (2004) Scripta Mater 51:373. doi: https://doi.org/10.1016/j.scriptamat.2004.05.022 CrossRefGoogle Scholar
  14. 14.
    Furukawa M, Horita Z, Langdon TG (2002) Mater Sci Eng A 332:97. doi: https://doi.org/10.1016/S0921-5093(01)01716-6 CrossRefGoogle Scholar
  15. 15.
    ASTM Standard E 399–90, American Society for Testing and MaterialsGoogle Scholar
  16. 16.
    Watanabe T (1988) Mater Forum 11:284Google Scholar
  17. 17.
    Lim LC, Watanabe T (1990) Acta Metall Mater 38:2507. doi: https://doi.org/10.1016/0956-7151(90)90262-F CrossRefGoogle Scholar
  18. 18.
    Zhang ZF, Wang ZG (2000) Mater Sci Eng A 284:285. doi: https://doi.org/10.1016/S0921-5093(00)00796-6 CrossRefGoogle Scholar
  19. 19.
    Lukas JP, Gerberich WW (1983) Fatigue Fract Eng Mater Struct 6:271CrossRefGoogle Scholar
  20. 20.
    Zhang JZ (2000) Eng Fract Mech 65:665. doi: https://doi.org/10.1016/S0013-7944(99)00148-4 CrossRefGoogle Scholar
  21. 21.
    Lynch SP (2007) Mater Sci Eng A 468–470:74. doi: https://doi.org/10.1016/j.msea.2006.09.083 CrossRefGoogle Scholar
  22. 22.
    Höppel HW, Kautz M, Xu C, Muraskin M, Langdon TG, Valiev RZ et al (2006) Int J Fatigue 28:1001. doi: https://doi.org/10.1016/j.ijfatigue.2005.08.014 CrossRefGoogle Scholar
  23. 23.
    Kim WJ, Wang JY (2007) Mater Sci Eng A 464:23. doi: https://doi.org/10.1016/j.msea.2007.03.074 CrossRefGoogle Scholar
  24. 24.
    Hockauf M, Meyer LW, Zillmann B, Hietschold M, Schulze S, Krüger L (in press) Mater Sci Eng AGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Lothar W. Meyer
    • 1
  • Kristin Sommer
    • 1
    Email author
  • Thorsten Halle
    • 1
  • Matthias Hockauf
    • 1
  1. 1.Institute of Materials and Impact EngineeringChemnitz University of TechnologyChemnitzGermany

Personalised recommendations