Journal of Materials Science

, Volume 43, Issue 14, pp 4945–4952 | Cite as

Delayed hydride cracking velocity in Zr-2.5Nb: detection by acoustic emission and theoretical model testing

  • J. I. Mieza
  • G. Vigna
  • E. Chomik
  • G. Domizzi


Acoustic emission (AE) detects elastic waves generated during delayed hydride cracking (DHC). The detection of the first acoustic signal is used to measure the propagation time. This time and the crack length measured on the broken specimen are used to determine the DHC velocity. In this work, DHC tests were carried out on Zr-2.5Nb alloy from CANDU pressure tubes. Linear relationship between cumulative count rate and cracking velocity was corroborated. It is generally accepted that the hydrides crack when they reach a critical length; nevertheless, in this work the number of signals generated during typical DHC test were higher than expected from that assumption. Dutton and Puls DHC model with some parameters calculated by Shmakov et al. was used to test out against experimental data. This modification is an original approach that makes more rational the DHC velocity calculation, avoiding arbitrary parameter selection. Good agreement was obtained for two different CANDU pressure tubes.


Hydride Acoustic Emission Acoustic Emission Signal Hydrogen Diffusion Acoustic Emission Event 



We would like to thank GOE (Elastic Wave Group) of CNEA for its assistance in acoustic emission technique.


  1. 1.
    Coleman CE, Ambler JFR (1979) Rev Coat Corros III(2 & 3):105–157Google Scholar
  2. 2.
    Simpson LA, Puls MP (1979) Metall Trans A 10A:1093–1105. doi: CrossRefGoogle Scholar
  3. 3.
    Moan GD, Coleman CE, Price EG, Rodgers DK, Sagat S (1990) Int J Press Vessels Pip 43:1–21. doi: CrossRefGoogle Scholar
  4. 4.
    Simpson LA, Clarke CF, Atomic energy of Canada Limited AECL-5815Google Scholar
  5. 5.
    Sagat S, Ambler JFR, Coleman CE, Atomic energy of Canada Limited AECL-9258Google Scholar
  6. 6.
    Heiple CR, Carpenter SH (1987) J Acoustic Emission 6(3):177–204Google Scholar
  7. 7.
    Scruby CB (1987) J Phys E 20:943–953. doi: CrossRefGoogle Scholar
  8. 8.
    Arora A, Tangri K (1981) Int Adv NDT 8:217–236Google Scholar
  9. 9.
    Lin G, Skrzypek S, Li D, Eadie RL (1998) J Test Eval 26(1):15–25CrossRefGoogle Scholar
  10. 10.
    Dutton R, Nutall K, Puls MP, Simpson LA (1977) Metall Trans A 8A:1553–1562CrossRefGoogle Scholar
  11. 11.
    Puls MP (1990) Metall Trans A 21A:2905–2917. doi: CrossRefGoogle Scholar
  12. 12.
    Shi S-Q, Liao M, Puls MP (1994) Model Simul Mater Sci Eng 2:1065–1078CrossRefGoogle Scholar
  13. 13.
    Lufrano J, Sofronis FP, Birnbaum HK (1996) J Mech Phys Solids 44(2):179–205. doi: CrossRefGoogle Scholar
  14. 14.
    Sagat S, Chow CK, Puls MP, Coleman CE (2000) J Nucl Mater 279:107–117. doi: CrossRefGoogle Scholar
  15. 15.
    Ma XQ, Shi SQ, Woo CH, Chen LQ (2006) Mech Mater 38:3–10. doi: CrossRefGoogle Scholar
  16. 16.
    Shmakov AA, Singh RN, Yan D, Eadie RL, Matvienko YG (2007) Comput Mater Sci 39:237–241. doi: CrossRefGoogle Scholar
  17. 17.
    Sagat S, Coleman CE, Griffiths M, Wilkins BJS (1994) In: Garde AM, Bradley ER (eds) Zirconium in the nuclear industry: 10th Int. symposium, ASTM STP 1245. ASTM, Philadelphia, pp 35–39Google Scholar
  18. 18.
    Cirimello P, Domizzi G, Haddad R (2006) J Nucl Mater 350:135–146. doi: CrossRefGoogle Scholar
  19. 19.
    Choubey R, AECL report no. FC-IAEA-02 T1.20.13-CAN-27363-02Google Scholar
  20. 20.
    Standard test method for JIC, a measure of fracture toughness. In: ASTM E813-81Google Scholar
  21. 21.
    Toffolon-Masclet C, Brachet J-C, Jago G (2002) J Nucl Mater 305:224–231CrossRefGoogle Scholar
  22. 22.
    Delayed hydride cracking in zirconium alloys in pressure tube nuclear reactors, IAEA TECDOC 1410, Final report of a coordinated research project, 1998–2002, October 2004Google Scholar
  23. 23.
    Jovanovic MT, Eadie RL, Ma Y, Anderson M, Sagat S, Perovic V (2001) Mater Charact 47:259–268. doi: CrossRefGoogle Scholar
  24. 24.
    Simpson LA, Cann CD (1984) J Nucl Mater 126:70–73. doi: CrossRefGoogle Scholar
  25. 25.
    Griffiths M, Winegar JE, Buyers A (2007) J Nucl Mater. doi:
  26. 26.
    Benites GM, Fernández Guillermet A, Cuello GJ, Campo J (2000) J Alloys Compd 299:183–188. doi: CrossRefGoogle Scholar
  27. 27.
    Griffiths M, Mecke JF, Winegar JE (1996) In: Bradley R, Sabol GP (eds) Zirconium in the nuclear industry: 11th international symposium, ASTM STP 1295, pp 580–602Google Scholar
  28. 28.
    Skinner BC, Dutton R (1990) In: Moody NR, Thompson A (eds) The minerals, metals and materials society. Pennsylvania, pp 73–83Google Scholar
  29. 29.
    Pan ZI, Ritchie IG, Puls MP (1996) J Nucl Mater 228:227–237. doi: CrossRefGoogle Scholar
  30. 30.
    Carpenter GJC (1973) J Nucl Mater 48:264–266. doi: CrossRefGoogle Scholar
  31. 31.
    MacEwen SR, Coleman CE, Ells CE, Faber J Jr (1985) Acta Metall 33:753–757. doi: CrossRefGoogle Scholar
  32. 32.
    Shi S-Q, Puls MP (1999) J Nucl Mater 275:312–317. doi: CrossRefGoogle Scholar
  33. 33.
    Shmakov AA (2004) At Energy 97(4):707–712. doi: CrossRefGoogle Scholar
  34. 34.
    Shek GF, Jovanovic MT, Seahra H, Li D, Eadie RL (1996) J Nucl Mater 231:221–230. doi: CrossRefGoogle Scholar
  35. 35.
    Jovanovic MT, Shek GF, Seahra H, Eadie RL (1998) Mater Charact 40:15–25. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • J. I. Mieza
    • 1
    • 2
  • G. Vigna
    • 1
  • E. Chomik
    • 1
  • G. Domizzi
    • 1
  1. 1.Unidad de Actividad Materiales, Centro Atómico ConstituyentesComisión Nacional de Energía AtómicaBuenos AiresArgentina
  2. 2.CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas)Buenos AiresArgentina

Personalised recommendations