Journal of Materials Science

, Volume 43, Issue 16, pp 5626–5633 | Cite as

Studies on the crystallization process of BEA/MOR co-crystalline zeolite

  • Xiaolan QiEmail author
  • Dejin Kong
  • Xiaohong Yuan
  • Zhongqiang Xu
  • Yangdong Wang
  • Junlin Zheng
  • Zaiku XieEmail author


BEA/MOR co-crystalline zeolite was synthesized using tetraethylammonium-fluorides as composite templates. The crystallization process of BEA/MOR co-crystalline zeolite was systematically investigated based on XRD, ICP, SEM, TGA, and nitrogen adsorption characterizations. Through the XRD patterns of the samples with different crystallization times, the BEA and MOR phases did not appear simultaneously in the crystallization process. The BEA phase was the favored product at the beginning of crystallization, whereafter the MOR phase emerged, and the BEA/MOR co-crystalline zeolite was gradually formed. The morphology of obtained particles changed a little during the crystallization process, but the granularity distribution range broadened. Asymmetry of BEA/MOR co-crystalline zeolite particles led to uneven distribution of the mesopores. It is showed that the pore size distribution of the samples with more than 90-h crystallization period exhibited bimodal mesopores distribution, and the pore sizes of the extra mesopores were 4.9 and 5.6 nm, respectively. Based on these results, the crystallization mechanism of BEA/MOR co-crystalline zeolite in tetraethylammonium-fluoride binary templates was roughly proposed.


Zeolite Mordenite Crystallization Time Zeolite Beta Fluoride Anion 



This work was financially supported by the National Basic Research Program of China, grant No. 2003CB615802.


  1. 1.
    Qi X, Li B, Li S, Liu X, Lin B (2006) Chin J Catal 27:228CrossRefGoogle Scholar
  2. 2.
    Niu X, Song Y, Xie S, Liu S, Wang Q, Xu L (2005) Catal Lett 103:211. doi: CrossRefGoogle Scholar
  3. 3.
    Gonzáleza G, Gonzáleza CS, Strackeb W, Reicheltb R, García L (2007) Microporous Mesoporous Mater 101:30. doi: CrossRefGoogle Scholar
  4. 4.
    Francesconi MS, López ZE, Uzcátegui D, González G, Hernández JC, Uzcátegui A, Loaiza A, Imbert FE (2005) Catal Today 107–108:809. doi: CrossRefGoogle Scholar
  5. 5.
    Belandría LN, Días CSG, Hernández JC, Uzcátegui A, González G, Imbert F (2005) North American Catalysis Society 19th North American Meeting, May 2005, Philadelphia, p 262Google Scholar
  6. 6.
    Szostak R (1988) Molecular sieves principles of synthesis and identification, 2nd edn. Blackie Academic & Professional, London, p 62Google Scholar
  7. 7.
    Rao CNR, Thomas JM (1985) Acc Chem Res 18:113. doi: CrossRefGoogle Scholar
  8. 8.
    Gregory AJ, Sand LB, Gard JA (1986) Zeolites 6:396. doi: CrossRefGoogle Scholar
  9. 9.
    Goossens AM, Wouters BH, Buschmann V, Martens JA (1999) Adv Mater 11:561. doi:10.1002/(SICI)1521-4095(199905)11:7≤561::AID-ADMA561≥3.0.CO;2-QCrossRefGoogle Scholar
  10. 10.
    Goossens AM, Wouters BH, Grobet PJ, Buschmann V, Fiermans L, Martens JA (2001) Eur J Inorg Chem 2001:1167. doi:10.1002/1099-0682(200105)2001:5≤1167::AID-EJIC1167≥3.0.CO;2-ZGoogle Scholar
  11. 11.
    Hanif N, Anderson MW, Alfredsson V, Terasakic O (2000) Phys Chem Chem Phys 2:3349. doi: CrossRefGoogle Scholar
  12. 12.
    Leonowicz ME, Vaughan DEW (1987) Nature 329:819. doi: CrossRefGoogle Scholar
  13. 13.
    Jacobs PA, Martens JA (1987) Synthesis of high-silica aluminosilicate zeolites, studies in surface science and catalysis, vol 33, Elsevier Science, Amsterdam, p 342Google Scholar
  14. 14.
    Lillerud KP, Raeder JH (1986) Zeolites 6:474. doi: CrossRefGoogle Scholar
  15. 15.
    Yang S, Evmiridis NP (1996) Microporous Mater 6:19. doi: CrossRefGoogle Scholar
  16. 16.
    Liu X, Lin B, Qi X, Chen G (2003) CN patent 1397493Google Scholar
  17. 17.
    Villaescusa LA, Zhou W, Morris RE, Barrett PA (2004) J Mater Chem 14:1982. doi: CrossRefGoogle Scholar
  18. 18.
  19. 19.
    Bouizi Y, Rouleau L, Valtchev VP (2006) Microporous Mesoporous Mater 91:70. doi: CrossRefGoogle Scholar
  20. 20.
  21. 21.
    Qi X, Liu X, Wang Z (2001) Stud Surf Sci Catal 135:02P39CrossRefGoogle Scholar
  22. 22.
    Qi X, Li S, Wang Z, Liu X, Lin B (2003) Chin J Catal 24:535Google Scholar
  23. 23.
    Qi X, Li S, Li B, Li N, Liu X, Lin B (2004) Chin J Catal 25:163Google Scholar
  24. 24.
    Qi X, Zheng J, Liu X (2006) In: Newman AM (ed) Focus on solid state chemistry, Nova Publishers, New York, p 95Google Scholar
  25. 25.
    Sasaki H, Oumi Y, Itabashi K, Lu B, Teranishi T, Sano T (2003) J Mater Chem 13:1173. doi: CrossRefGoogle Scholar
  26. 26.
    Fan W, Shirato S, Gao F, Ogura M, Okubo T (2006) Microporous Mesoporous Mater 89:227. doi: CrossRefGoogle Scholar
  27. 27.
    Qi X, Wang Z, Li S, Li B, Liu X, Lin B (2006) Acta Phys-Chim Sin 22:198Google Scholar
  28. 28.
    Lu B, Tsuda T, Sasaki H, Oumi Y, Itabashi K, Teranishi T, Sano T (2004) Chem Mater 16:286. doi: CrossRefGoogle Scholar
  29. 29.
    Shaikh AA, Joshi PN, Jacob NE, Shiralkar VP (1993) Zeolites 13:511. doi: CrossRefGoogle Scholar
  30. 30.
    Qi X, Liu X, Chen G, Lin B (2000) Chem J Chin Univ 21:1161Google Scholar
  31. 31.
    Kim DS, Chang JS, Hwang JS, Park SE, Kim JM (2004) Micropor Mesopor Mater 68:77. doi: CrossRefGoogle Scholar
  32. 32.
    Kruk M, Jaroniec M (2001) Chem Mater 13:3169. doi: CrossRefGoogle Scholar
  33. 33.
    Rouquerol J, Rouquerol F, Sing KSW (1999) Adsorption by powders and porous solids: principle, methodology and applications. Academic Press, London, p 440Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Shanghai Research Institute of Petrochemical Technology, SINOPECShanghaiPeople’s Republic of China

Personalised recommendations