Advertisement

Journal of Materials Science

, Volume 43, Issue 14, pp 4938–4944 | Cite as

Transient liquid phase bonding of steel using an Fe–B interlayer: microstructural analysis

  • N. Di Luozzo
  • M. Fontana
  • B. ArcondoEmail author
Article

Abstract

Transient liquid phase bonding processes have been performed to join two carbon steel tubes using Fe96.2B3.8 wt% amorphous ribbons as interlayer. Welding experiments were performed at the temperature T ≈ 1,250 °C for different durations and under pressures of 0.8, 2, 3, and 4 MPa. From metallographic inspection, it is concluded that the bonding process ends in 7.0 min if a pressure of 4 MPa is applied, whereas the process results incomplete if less pressure is applied. The metallurgical aspects of these joints are analyzed. Plastic deformation at the joint is observed. Micrographs show that if pressure increases, the amount of pro-eutectoid ferrite decreases, therefore, an increase in the hardenability of the steel occurs. This fact could be due to the effect of the compression plastic deformation that prevails at the joint zone.

Keywords

Ferrite Austenite Bainite Pearlite Bonding Process 

References

  1. 1.
    Sinclair CW, Purdy GR, Morral JE (2000) Metall Mater Trans A 31A:1187. doi: https://doi.org/10.1007/s11661-000-0114-2 CrossRefGoogle Scholar
  2. 2.
    Ohsasa K, Shinmura T, Narita T (1999) J Phase Equilib 20(3):199. doi: https://doi.org/10.1361/105497199770335721 CrossRefGoogle Scholar
  3. 3.
    Sinclair CW (1999) J Phase Equilib 20(4):361. doi: https://doi.org/10.1361/105497199770340888 CrossRefGoogle Scholar
  4. 4.
    MacDonald WD, Eagar TW (1992) Annu Rev Mater Sci 22:23CrossRefGoogle Scholar
  5. 5.
    Ikawa H, Nakao Y, Isai T (1979) Trans Jpn Weld Soc 10(1):25Google Scholar
  6. 6.
    Duvall DS, Owczarski WA, Paulonis DF (1974) Weld J 53:203Google Scholar
  7. 7.
    Tuah-Poku I, Dollar M, Massalski TB (1988) Metall Trans A 19A:675CrossRefGoogle Scholar
  8. 8.
    Kishi S, Maenosono T, Sato M (1999) US Patent number 5875954Google Scholar
  9. 9.
    Hamada M, Fukadal Y, Hueda M, Komizo Y (2000) US Patent number 6059175Google Scholar
  10. 10.
    Shimizu T, Horio H, Kito K, Inagaki S, Yamada R (2003) US Patent number 6592154 B2Google Scholar
  11. 11.
    Di Luozzo N, Fontana M, Arcondo B (2007) J Mater Sci 42(11):4044. doi: https://doi.org/10.1007/s10853-006-0190-9 CrossRefGoogle Scholar
  12. 12.
    Cain SR, Wilcox JR, Venkatraman R (1997) Acta Mater 45(2):701. doi: https://doi.org/10.1016/S1359-6454(96)00188-7 CrossRefGoogle Scholar
  13. 13.
    Shirzadi AA, Wallach ER (1999) Acta Mater 47:3551. doi: https://doi.org/10.1016/S1359-6454(99)00234-7 CrossRefGoogle Scholar
  14. 14.
    Nilan TG (1967) AIME Met Soc Trans 239(6):898Google Scholar
  15. 15.
    Thelning KE (1979) Boron in steel, Milwaukee, WI, p 127Google Scholar
  16. 16.
    Smith YE, Siebert CA (1971) Metall Trans 2:1711. doi: https://doi.org/10.1007/BF02663352 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Tenaris University Industrial SchoolTenarisCampanaArgentina
  2. 2.Laboratorio de Solidos Amorfos, Instituto de Tecnologias y Ciencias de la Ingenieria, Facultad de IngenieriaUniversidad de Buenos Aires-CONICETBuenos AiresArgentina

Personalised recommendations