Advertisement

Journal of Materials Science

, Volume 43, Issue 15, pp 5193–5198 | Cite as

Mechanochemical effects on hydrogen absorption in Mg2Ni alloys under mechanical processing conditions

  • G. MulasEmail author
  • F. Delogu
  • C. Pistidda
  • G. Cocco
Article

Abstract

The present investigation focuses on the kinetics of hydrogen absorption in Mg2Ni powders subjected to thermal or mechanochemical activation. The process was initially carried out under isobaric-isothermal conditions in a mechanochemical reactor at rest. Once the static hydrogen absorption process approached completion, the system was subjected to mechanical activation at constant hydrogen pressure. The mechanical treatment of powders induced further hydrogen absorption at rates depending on the processing intensity. The observed mechanochemical effect is related to the generation of reactive surfaces when mechanical loads apply on powders. The reactive surface area involved in the mechanochemical hydrogen absorption and the duration of the absorption process are roughly estimated.

Keywords

Reactive Surface Hydrogen Absorption Total Surface Area Absorption Process Hydrogen Uptake 

Notes

Acknowledgement

Financial support has been provided by the University of Cagliari and the University of Sassari.

References

  1. 1.
    Heinicke G (1984) Tribochemistry. Akademie-Verlag, BerlinGoogle Scholar
  2. 2.
    Butyagin P Yu (1989) Sov Sci Rev B Chem 14:1Google Scholar
  3. 3.
    Gutman EM (1998) Mechanochemistry of materials. Cambridge International Science Publishing, CambridgeGoogle Scholar
  4. 4.
    Courtney TH (1995) Mater Trans JIM 36:110CrossRefGoogle Scholar
  5. 5.
    Khina BB, Froes FH (1996) J Metals 48(7):36Google Scholar
  6. 6.
    Hammerberg JE, Holian BL, Roder J, Bishop AR, Zhou SJ (1998) Physica D 123:330. doi: https://doi.org/10.1016/S0167-2789(98)00132-8 CrossRefGoogle Scholar
  7. 7.
    Fu XY, Falk ML, Rigney DA (2001) Wear 250:420. doi: https://doi.org/10.1016/S0043-1648(01)00607-X CrossRefGoogle Scholar
  8. 8.
    Lund C, Schuh CA (2003) Appl Phys Lett 82:2017. doi: https://doi.org/10.1063/1.1563831 CrossRefGoogle Scholar
  9. 9.
    Odunuga S, Li Y, Krasnochtchekov P, Bellon P, Averback RS (2005) Phys Rev Lett 95:045901. doi: https://doi.org/10.1103/PhysRevLett.95.045901 CrossRefGoogle Scholar
  10. 10.
    Delogu F, Cocco G (2005) Phys Rev B 72:014124. doi: https://doi.org/10.1103/PhysRevB.72.014124 CrossRefGoogle Scholar
  11. 11.
    Delogu F, Cocco G (2006) Phys Rev B 74:035406. doi: https://doi.org/10.1103/PhysRevB.74.035406 CrossRefGoogle Scholar
  12. 12.
    Suryanarayana C (2001) Prog Mater Sci 46:1. doi: https://doi.org/10.1016/S0079-6425(99)00010-9 CrossRefGoogle Scholar
  13. 13.
    Avvakumov GV, Senna M, Kosova A (2001) Soft mechanochemical synthesis: a basis for new chemical technologies. Springer-Verlag, BerlinGoogle Scholar
  14. 14.
    Hickenboth CR, Moore JS, White SR, Sottos NR, Baudry J, Wilson SR (2007) Nature 446:423. doi: https://doi.org/10.1038/nature05681 CrossRefGoogle Scholar
  15. 15.
    Garroni S, Delogu F, Mulas G, Cocco G (2007) Scr Mater 57(10):964. doi: https://doi.org/10.1016/j.scriptamat.2007.07.010 CrossRefGoogle Scholar
  16. 16.
    Bowman RC Jr, Udovic TJ, Jensen CM (eds) (2007) In: Proceedings of MH2006, international symposium of metal hydride systems, 31 October 2007, Maui, Hawaii, USA. J Alloys Compd 446–447:1Google Scholar
  17. 17.
    Orimo S, Fujii H (1996) J Alloys Compd 232:L16. doi: https://doi.org/10.1016/0925-8388(95)02079-9 CrossRefGoogle Scholar
  18. 18.
    Orimo S, Fujii H, Ikeda K (1997) Acta Mater 45:331. doi: https://doi.org/10.1016/S1359-6454(96)00158-9 CrossRefGoogle Scholar
  19. 19.
    Tessier P, Enoki H, Bououdina M, Akiba E (1998) J Alloys Compd 268:285. doi: https://doi.org/10.1016/S0925-8388(97)00585-9 CrossRefGoogle Scholar
  20. 20.
    Mulas G, Schiffini L, Cocco G (2004) J Mater Res 19(11):3279. doi: https://doi.org/10.1557/JMR.2004.0417 CrossRefGoogle Scholar
  21. 21.
    Delogu F, Mulas G, Monagheddu M, Schiffini L, Cocco G (2000) Int J Non-Eq Proc 11:235Google Scholar
  22. 22.
    Bloch J, Minz MH (1997) J Alloys Compd 253:529. doi: https://doi.org/10.1016/S0925-8388(96)03070-8 CrossRefGoogle Scholar
  23. 23.
    Cocco G, Delogu F, Schiffini L (2000) J Mater Synth Proc 3–4:167. doi: https://doi.org/10.1023/A:1011308025376 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Dipartimento di ChimicaUniversità degli Studi di SassariSassariItaly
  2. 2.Dipartimento di Ingegneria Chimica e MaterialiUniversità degli Studi di CagliariCagliariItaly
  3. 3.GKSS Research CenterGeestachtGermany

Personalised recommendations