Advertisement

Journal of Materials Science

, Volume 43, Issue 14, pp 4921–4928 | Cite as

Phenomenological description of thermomechanical behavior of shape memory alloy

  • Jun-Yan Liu
  • Hao Lu
  • Jun-Mei Chen
  • Combescure Alain
  • Tong Wu
Article

Abstract

On the basis of a thermomechanical phenomenological model, we analyze the thermomechanical behavior of polycrystalline NiTi. Pseudoelastic response and strain-temperature response under fixed stress are studied by using finite element simulation. Calculated mechanical and thermal hysteresis behaviors of NiTi sheet are in good agreement with those observed experimentally. Hardening in stress–strain hysteresis loop and sharp change of strain in strain-temperature hysteresis loop are described by numerical simulation. The result from thermomechanically coupled calculation shows the phenomenon that phase transition occurs by nucleation and propagation of transformation fronts.

Keywords

Austenite Martensite Shape Memory Alloy Finite Element Simulation Helmholtz Free Energy 

Notes

Acknowledgement

This project is supported by the National Natural Science Foundation of China (Grant No.50475021).

References

  1. 1.
    Shaw JA, Stelios K (1995) J Mech Phys Solids 43:1243. doi: https://doi.org/10.1016/0022-5096(95)00024-D CrossRefGoogle Scholar
  2. 2.
    Shaw J, Kyriakides S (1997) Acta Mater 45:683. doi: https://doi.org/10.1016/S1359-6454(96)00189-9 CrossRefGoogle Scholar
  3. 3.
    Rodriguez C, Brown LC (1980) Metall Trans A llA:147CrossRefGoogle Scholar
  4. 4.
    Entemeyer D, Patoor E, Eberhardt A, Berveiller M (2000) Int J Plastic16:1269. doi: https://doi.org/10.1016/S0749-6419(00)00010-3 CrossRefGoogle Scholar
  5. 5.
    Idesman AV, Levitas VI, Preston DL, Chao JY (2005) J Mech Phys Solids 53:495. doi: https://doi.org/10.1016/j.jmps.2004.10.001 CrossRefGoogle Scholar
  6. 6.
    Levitas VI, Idesman AV, Preston DL (2004) Phys Rev Lett 93:105701. doi: https://doi.org/10.1103/PhysRevLett.93.105701 CrossRefGoogle Scholar
  7. 7.
    Liu JY, Lu H, Chen JM, Zhang Z (2007) Mater Sci Eng A 448:204. doi: https://doi.org/10.1016/j.msea.2006.10.053 CrossRefGoogle Scholar
  8. 8.
    Lexcellent C, Goo BC, Sun QP, Bernardini J (1995) Acta mater 44:3773. doi: https://doi.org/10.1016/1359-6454(95)00452-1 CrossRefGoogle Scholar
  9. 9.
    Thamburaja P (2005) J Mech Phys Solids 53:825. doi: https://doi.org/10.1016/j.jmps.2004.11.004 CrossRefGoogle Scholar
  10. 10.
    Taylor GI (1938) J Inst Metals 62:30Google Scholar
  11. 11.
    Thamburaja P, Anand L (2003) Acta mater 51:325. doi: https://doi.org/10.1016/S1359-6454(02)00389-0 CrossRefGoogle Scholar
  12. 12.
    Simo J, Hughes T (1998) Computational inelasticity. Springer, New YorkGoogle Scholar
  13. 13.
    Hane K, Shield T (1999) Acta Mater 47:2603. doi: https://doi.org/10.1016/S1359-6454(99)00143-3 CrossRefGoogle Scholar
  14. 14.
    Thamburaja P, Anand L (2002) Int J Plastic 18:1607. doi: https://doi.org/10.1016/S0749-6419(02)00031-1 CrossRefGoogle Scholar
  15. 15.
    Thamburaja P, Pan H, Chau FS (2005) Acta mater 53:3821. doi: https://doi.org/10.1016/j.actamat.2005.03.054 CrossRefGoogle Scholar
  16. 16.
    Fang D-N, Lu W, Yan W-Y, Inoue T, Hwang K-C (1999) Acta mater 47:269. doi: https://doi.org/10.1016/S1359-6454(98)00303-6 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Jun-Yan Liu
    • 1
  • Hao Lu
    • 1
  • Jun-Mei Chen
    • 1
  • Combescure Alain
    • 2
  • Tong Wu
    • 2
  1. 1.Materials Science and Engineering SchoolShanghai Jiaotong UniversityShanghaiChina
  2. 2.LaMCoSINSA-LyonVilleurbanneFrance

Personalised recommendations