Advertisement

Journal of Materials Science

, Volume 43, Issue 14, pp 4915–4920 | Cite as

Effect of twin-boundaries on melting of aluminum

  • Sardar Sikandar HayatEmail author
  • Muhammad A. Choudhry
  • Sheikh A. Ahmad
Article

Abstract

Molecular dynamics simulation technique has been applied to investigate melting temperature of aluminum. Semi-empirical potentials, based on the embedded atom method have been employed to calculate lattice parameter, energy per atom and mean square displacements. Melting temperature is found to compare well with the experimental results. Computer simulation studies of some low index (111), (113) and (112) twin boundaries at various temperatures and their effect on the melting temperature are also carried out. It is observed in this study that in the presence of twin boundaries, aluminum melts at lower temperatures, as compared to normal melting point.

Keywords

Twin Boundary Computational Cell Sudden Jump Twin Interface Normal Melting Point 

Notes

Acknowledgements

The work of S.S.H. and M.A.C. was supported by the Higher Education Commission (HEC) of Pakistan. We are indebted for useful discussion to J. I. Akhter of Physics Division, PINSTECH, Pakistan.

References

  1. 1.
    Aluminum Autodesign Review (1998) Aluminum Soc 6(3):1Google Scholar
  2. 2.
    Aluminum Standards and Data (1990) The aluminum association. Washington, DCGoogle Scholar
  3. 3.
    Tang M, Carter WC, Cannon RM (2006) J Mater Sci 41:7691. doi: https://doi.org/10.1007/s10853-006-0608-4 CrossRefGoogle Scholar
  4. 4.
    Jian-Min Z, Yu-Hong H, Ke-Wei X, Vincent J (2007) Chinese Phys 16:210. doi: https://doi.org/10.1088/1009-1963/16/1/036 CrossRefGoogle Scholar
  5. 5.
    Pollet L, Boninsegni M, Kuklov AB, Prokof’ev NV, Svistunov BV, Troyer M (2007) Phys Rev Lett 98:135301. doi: https://doi.org/10.1103/PhysRevLett.98.135301 CrossRefGoogle Scholar
  6. 6.
    Park HS, Gall K, Zimmerman JA (2006) Mech Phys Solids 54:1862. doi: https://doi.org/10.1016/j.jmps.2006.03.006 CrossRefGoogle Scholar
  7. 7.
    Boyer LL (1985) Phase Transit 5:1. doi: https://doi.org/10.1080/01411598508219144 CrossRefGoogle Scholar
  8. 8.
    Cahn RW (1978) Nature 273:491. doi: https://doi.org/10.1038/273491b0 CrossRefGoogle Scholar
  9. 9.
    Cahn RW (1986) Nature 323:668. doi: https://doi.org/10.1038/323668a0 CrossRefGoogle Scholar
  10. 10.
    Boyce JB, Stutzmann M (1985) Phys Rev Lett 54:562. doi: https://doi.org/10.1103/PhysRevLett.54.562 CrossRefGoogle Scholar
  11. 11.
    Rossouw CJ, Donnelly SE (1985) Phys Rev Lett 55:2960. doi: https://doi.org/10.1103/PhysRevLett.55.2960 CrossRefGoogle Scholar
  12. 12.
    Daeges J, Gleiter H, Perepezko JH (1986) Phys Rev Lett 119:79CrossRefGoogle Scholar
  13. 13.
    Stoltze P, Norskov JK, Landman U (1988) Phys Rev Lett 61:440. doi: https://doi.org/10.1103/PhysRevLett.61.440 CrossRefGoogle Scholar
  14. 14.
    Chan SW, Liu JL, Balluffi RW (1985) Scr Metall 19:1251. doi: https://doi.org/10.1016/0036-9748(85)90248-0 CrossRefGoogle Scholar
  15. 15.
    Balluffi RW, Maurer R (1988) Scr Metall 22:709. doi: https://doi.org/10.1016/S0036-9748(88)80187-X CrossRefGoogle Scholar
  16. 16.
    Faridi BAS, Ahmad SA, Choudhry MA (1991) Ind J Pure Appl Phys 29:796Google Scholar
  17. 17.
    Ciccotti G, Frenkel D, McDonald IR (1987) Simulations of liquids and solids. North Holland, AmsterdamGoogle Scholar
  18. 18.
    Binder K (ed) (1979) Monte Carlo methods in statistical physics. Springer-Verlag, BerlinGoogle Scholar
  19. 19.
    Broughton JQ, Li XP (1987) Phys Rev B 35:9120. doi: https://doi.org/10.1103/PhysRevB.35.9120 CrossRefGoogle Scholar
  20. 20.
    Nose S, Yonezawa F (1985) Sol Stat Comm 56:1009; (1986) J Chem Phys 84:1803. doi: https://doi.org/10.1063/1.450427 CrossRefGoogle Scholar
  21. 21.
    Daw MS, Baskes MI (1984) Phys Rev B 29:6443. doi: https://doi.org/10.1103/PhysRevB.29.6443 CrossRefGoogle Scholar
  22. 22.
    Finnis MW, Sinclair JE (1984) Philos Mag A 50:45. doi: https://doi.org/10.1080/01418618408244210 CrossRefGoogle Scholar
  23. 23.
    Manninen M (1986) Phys Rev B 34:8486. doi: https://doi.org/10.1103/PhysRevB.34.8486 CrossRefGoogle Scholar
  24. 24.
    Oh DJ, Johnson RA (1988) J Mater Res 3:471. doi: https://doi.org/10.1557/JMR.1988.0471 CrossRefGoogle Scholar
  25. 25.
    Michael JM, Dimitrios AP (1996) Phys Rev B 54:4519. doi: https://doi.org/10.1103/PhysRevB.54.4519 Google Scholar
  26. 26.
    Cagin T, Dereli G, Uludogan M, Tomak M (1999) Phys Rev B 59:3468. doi: https://doi.org/10.1103/PhysRevB.59.3468 CrossRefGoogle Scholar
  27. 27.
    Foiles SM, Baskes MI, Daw MS (1986) Phys Rev B 33:7983. doi: https://doi.org/10.1103/PhysRevB.33.7983 CrossRefGoogle Scholar
  28. 28.
    Mei J, Davenport JW (1990) Phys Rev B 42:9682. doi: https://doi.org/10.1103/PhysRevB.42.9682 CrossRefGoogle Scholar
  29. 29.
    Akhter JI, Yaldram K, Ahmad W (1996) Sol Stat Comm 98:1043. doi: https://doi.org/10.1016/0038-1098(96)00137-8 CrossRefGoogle Scholar
  30. 30.
    Akhter JI, Yaldram K (1997) Int J Mod Phys C 8:1217. doi: https://doi.org/10.1142/S0129183197001089 CrossRefGoogle Scholar
  31. 31.
    Ahmed E, Akhter JI, Ahmad M (2004) Comput Mater Sci 31:309CrossRefGoogle Scholar
  32. 32.
    Akhter JI, Ahmed E, Ahmad M (2005) Mater Chem Phys 93:504. doi: https://doi.org/10.1016/j.matchemphys.2005.03.048 CrossRefGoogle Scholar
  33. 33.
    Lutsko JF, Wolf D, Phillpot SR, Yip S (1989) Phys Rev B 40:2841. doi: https://doi.org/10.1103/PhysRevB.40.2841 CrossRefGoogle Scholar
  34. 34.
    Wolf D, Lutsko JF (1988) Phys Rev Lett 60:1170. doi: https://doi.org/10.1103/PhysRevLett.60.1170 CrossRefGoogle Scholar
  35. 35.
    Lutsko JF, Wolf D (1989) Scr Metall 22:1923. doi: https://doi.org/10.1016/S0036-9748(88)80239-4 CrossRefGoogle Scholar
  36. 36.
    Nordsieck A (1962) Math Comput 16:22. doi: https://doi.org/10.2307/2003809 CrossRefGoogle Scholar
  37. 37.
    Fletcher R (1972) A FORTRAN subroutine for minimization by the method of conjugate gradients, AERE-R7073Google Scholar
  38. 38.
    Ubbelohde AR (1978) The Molten State of matter (Melting and crystal structure). Wiley, New YorkGoogle Scholar
  39. 39.
    Ashcroft NW, Mermin ND (1976) Solid state physics. Holt, Rinehart, Winston, New YorkGoogle Scholar
  40. 40.
    Mitev P, Evangelakis GA, Kaxiras E (2006) Model Simul Mater Sci Eng 14:721. doi: https://doi.org/10.1088/0965-0393/14/4/013 CrossRefGoogle Scholar
  41. 41.
    Nguyen T, Ho PS, Kwok T, Yip S (1986) Phys Rev Lett 57:1919CrossRefGoogle Scholar
  42. 42.
    Hart EW (1972) In: Hu H (ed) The nature and behavior of grain boundaries. Plenum, New York, p 155CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Sardar Sikandar Hayat
    • 1
    Email author
  • Muhammad A. Choudhry
    • 1
  • Sheikh A. Ahmad
    • 1
  1. 1.Department of PhysicsIslamia University of BahawalpurBahawalpurPakistan

Personalised recommendations