Journal of Materials Science

, Volume 43, Issue 23–24, pp 7451–7456 | Cite as

An evaluation of microstructure and microhardness in copper subjected to ultra-high strains

  • A. P. ZhilyaevEmail author
  • S. Swaminathan
  • A. A. Gimazov
  • T. R. McNelley
  • T. G. Langdon
Ultrafine-Grained Materials


The microstructure and microhardness of copper subjected to large strains either using one or a combination of severe plastic deformation (SPD) processing techniques was evaluated. The individual SPD techniques used include equal-channel angular pressing (ECAP), high-pressure torsion (HPT), and chip formation during machining (M). Microstructural characterization using orientation imaging microscopy provided detailed information on the grain sizes and misorientation statistics after different processing routes. Vickers indentation analysis was used to evaluate the hardness of the deformed samples. The results show that excellent microstructures and properties are achieved when these three processes are used in combination, including grain sizes in the range of ~0.2–0.3 μm and hardness values up to >1,900 MPa.


Severe Plastic Deformation Orientation Imaging Microscopy Shear Texture Severe Plastic Deformation Processing ECAP Processing 



One of the authors (APZ) thanks the Spanish Ministry of Education and Science (under the Ramón y Cajal program) for financial support. Another author (TGL) was supported by the National Science Foundation of the United States under Grant No. DMR-0243331.


  1. 1.
    Segal VM, Reznikov VI, Drobyshevskiy AE, Kopylov VI (1981) Russ Metall 1:99Google Scholar
  2. 2.
    Valiev RZ, Langdon TG (2006) Prog Mater Sci 51:881. doi: CrossRefGoogle Scholar
  3. 3.
    Zhilyaev AP, Lee S, Nurislamova GV, Valiev RZ, Langdon TG (2001) Scripta Mater 44:2753. doi: CrossRefGoogle Scholar
  4. 4.
    Zhilyaev AP, Nurislamova GV, Kim B-K, Baró MD, Szpunar JA, Langdon TG (2003) Acta Mater 51:753. doi: CrossRefGoogle Scholar
  5. 5.
    Swaminathan S, Brown TL, Chandrasekar S, McNelley TR, Compton WD (2007) Scripta Mater 56:1047. doi: CrossRefGoogle Scholar
  6. 6.
    Swaminathan S, Ravi Shankar M, Rao BC, Compton WD, Chandrasekar S, King AH, Trumble KP (2007) J Mater Sci 42:1529. doi: CrossRefGoogle Scholar
  7. 7.
    Furukawa M, Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1998) Mater Sci Eng A 257:328. doi: CrossRefGoogle Scholar
  8. 8.
    Oh-ishi K, Horita Z, Furukawa M, Nemoto M, Langdon TG (1998) Metall Mater Trans 29A:2011. doi: CrossRefGoogle Scholar
  9. 9.
    Wang J, Iwahashi Y, Horita Z, Furukawa M, Nemoto M, Valiev RZ, Langdon TG (1996) Acta Mater 44:2973. doi: CrossRefGoogle Scholar
  10. 10.
    Furukawa M, Iwahashi Y, Horita Z, Nemoto M, Tsenev NK, Valiev RZ, Langdon TG (1997) Acta Mater 45:4751. doi: CrossRefGoogle Scholar
  11. 11.
    Ferrasse S, Segal VM, Hartwig KT, Goforth RE (1997) Metall Mater Trans 28A:1047. doi: CrossRefGoogle Scholar
  12. 12.
    Hasegawa H, Komura S, Utsunomiya A, Horita Z, Furukawa M, Nemoto M, Langdon TG (1999) Mater Sci Eng A 265:188. doi: CrossRefGoogle Scholar
  13. 13.
    Neishi K, Horita Z, Langdon TG (2002) Mater Sci Eng A 325:54. doi: CrossRefGoogle Scholar
  14. 14.
    Dalla Torre F, Lapovok R, Sandlin J, Thomson PF, Davies CHJ, Pereloma EV (2004) Acta Mater 52:4819. doi: CrossRefGoogle Scholar
  15. 15.
    Brandstetter S, Zhang K, Escuadro A, Weertman JR, Van Swygenhoven H (2008) Scripta Mater 58:61. doi: CrossRefGoogle Scholar
  16. 16.
    Zhilyaev AP, Gimazov AA, Raab GI, Langdon TG (2008) Mater Sci Eng A 486:123CrossRefGoogle Scholar
  17. 17.
    OIM user’s manual, EDAX-TSL, E. Mahway, NJ, 2005Google Scholar
  18. 18.
    Zhilyaev AP, Oh-ishi K, Raab GI, McNelley TR (2006) Ultrafine grained materials IV. In: Zhu YT, Langdon TG, Horita Z, Zehetbauer MJ, Semiatin SL, Lowe TC (eds) The Minerals, Metals and Materials society, Warrendale, PA, p 113Google Scholar
  19. 19.
    Dutkiewicz J, Kuśnierz J, Maziarz W, Lejkowska M, Garbacz H, Lewandowska M, Dobromysloa AV, Kurzydlowski KJ (2005) Phys Stat Sol (a) 202:2309. doi: CrossRefGoogle Scholar
  20. 20.
    Todaka Y, Umemoto M, Yamazaki A, Sasaki J, Tsuchiya K (2008) Mater Trans 49:7. doi: CrossRefGoogle Scholar
  21. 21.
    Zhilyaev AP, Gimazov AA, Soshnikova EP, Révész Á, Langdon TG (2008) Mater Sci Eng A 489:207CrossRefGoogle Scholar
  22. 22.
    Zhilyaev AP, Garcia-Infanta JM, Carreno F, Langdon TG, Ruano OA (2007) Scripta Mater 57:763. doi: CrossRefGoogle Scholar
  23. 23.
    Jiang H, Zhu YT, Butt DP, Alexandrov IV, Lowe TC (2000) Mater Sci Eng A 290:128. doi: CrossRefGoogle Scholar
  24. 24.
    Degtyarev MV, Chashchukhina TI, Voronova LM, Patselov AM, Pilyugin VP (2007) Acta Mater 55:6039. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • A. P. Zhilyaev
    • 1
    • 2
    Email author
  • S. Swaminathan
    • 3
  • A. A. Gimazov
    • 2
  • T. R. McNelley
    • 3
  • T. G. Langdon
    • 4
    • 5
  1. 1.Department of Physical MetallurgyCentro Nacional de Investigaciones Metalúrgicas, CSICMadridSpain
  2. 2.Institute for Metals Superplasticity Problems, RASUfaRussia
  3. 3.Department of Mechanical & Astronautical EngineeringNaval Postgraduate SchoolMontereyUSA
  4. 4.Departments of Aerospace & Mechanical Engineering and Materials ScienceUniversity of Southern CaliforniaLos AngelesUSA
  5. 5.Materials Research Group, School of Engineering SciencesUniversity of SouthamptonSouthamptonUK

Personalised recommendations