Journal of Materials Science

, Volume 43, Issue 14, pp 4892–4900 | Cite as

Investigation of the drawing mechanism of UHMWPE fibers

  • Jen-Taut YehEmail author
  • Shui-Chuan Lin
  • Cheng-Wei Tu
  • Kuo-Huang Hsie
  • Feng-Chih Chang


The influence of draw ratios (DR) of gel-spun ultrahigh molecular weight polyethylene (UHMWPE) fibers on resultant morphologies, tensile, degrees of orientation, and crystal phase transition properties were investigated using wide-angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). The anisotropic crystalline structure with full concentric circular rings originally shown on the WAXD patterns of the as-prepared and drawn UHMWPE fibers gradually transform into oriented fibers with azimuthal spots on the equator as their DR values increase from 1 to 20, in which their orthorhombic crystals, percentage crystallinity, crystalline orientation, and the birefringence values increase significantly. As evidenced by SEM and WAXD analysis, the chain-folded molecules originally present in kebab crystals of the as-prepared UHMWPE fiber specimens gradually transformed into shish-like crystals with relatively high orientation as their DR values increase from 1 to 20. In contrast, the crystallinity and crystal orientation values of the drawn UHMWPE specimens increase only slightly, as their DR values increase from 20 to 40, wherein both crystallinity values of orthorhombic and monoclinic crystals increase slightly. In fact, barely any oriented kebab but only shish crystals were observed on the surfaces of drawn UHMWPE fiber specimens with DR values higher than 20. The birefringence values increase only slightly with further increasing DR values, while crystallinity and crystal orientation values of the drawn UHMWPE fiber specimens remained relatively unchanged as their DR values increase from 40 to 150. In the meantime, the monoclinic crystals gradually grow at the expense of the orthorhombic form crystals as the DR values of drawn UHMWPE fiber specimens increase from 40 to 150. Possible reasons accounting for these interesting properties found for the drawn UHMWPE fibers with varying draw ratios are proposed in this study.


UHMWPE Draw Ratio Ultrahigh Molecular Weight Polyethylene Monoclinic Crystal Orthorhombic Crystal 



The authors would like to express their appreciation to National Science Council (NSC 95–2221-E-253-008-MY3) and Department of Industrial Technology, Ministry of Economic Affairs (95-EC-17-A-11-S1-057) for their support of this work. Thanks are also extended to Drs. M. H. J. Koch, A. Gabriel, Y. S. Sun, and Y. H. Lai for their help in WAXS measurements.


  1. 1.
    Smith P, Lemstra PJ (1979) Macromol Chem 180:2983. doi: CrossRefGoogle Scholar
  2. 2.
    Barham PJ, Leller A (1985) J Mater Sci 20:2281. doi: CrossRefGoogle Scholar
  3. 3.
    Ward IM (1995) Macromol Symp 100:1CrossRefGoogle Scholar
  4. 4.
    Poter RS (1980) Chem Rev 80:351. doi: CrossRefGoogle Scholar
  5. 5.
    Rudin A, Tchir WJ, Gagnon R, Schreiber HP, Collacoot R (1989) Ind Eng Chem Res 28:174. doi: CrossRefGoogle Scholar
  6. 6.
    Mooen JA, Kip BJ (1992) J Polym Sci Part B: Polym Phys 30:361. doi: CrossRefGoogle Scholar
  7. 7.
    Riekel C, Cedola A, Heidelbach F, Wagner K (1997) Macromolecules 30:1033. doi: CrossRefGoogle Scholar
  8. 8.
    Yang L, Somani RH, Sics I, Hsiao BS, Kolb R, Fruitwala H, Ong C (2004) Macromolecules 37:4845. doi: CrossRefGoogle Scholar
  9. 9.
    Russel KE, Heyding RD (1997) Polymer 38:1409. doi: CrossRefGoogle Scholar
  10. 10.
    Nakae M, Uehara H, Kanamoto T, Zachariades AE, Porter RS (2000) Macromolecules 33:2632. doi: CrossRefGoogle Scholar
  11. 11.
    Hu XP, Hsieh YL (1998) Polym J 30:771. doi: CrossRefGoogle Scholar
  12. 12.
    Hsieh YL, Ju J (1994) J Appl Polym Sci 53:347. doi: CrossRefGoogle Scholar
  13. 13.
    Ratner S, Weinberg A, Maron G (2003) Polym Compos 24:422. doi: CrossRefGoogle Scholar
  14. 14.
    Ratner S, Weinberg A, Wachtel E, Moret PM, Marom G (2004) Macromol Rapid Commun 25:1150. doi: CrossRefGoogle Scholar
  15. 15.
    Luo C, Guardala NA, Price JL, Chodak I, Zimerman O, Weiss RG (2002) Macromolecules 35:4690. doi: CrossRefGoogle Scholar
  16. 16.
    Hu WG, Schmidit RK (2000) Polymer 41:2979. doi: CrossRefGoogle Scholar
  17. 17.
    Rotzinger BP, Chanzy HD, Smith P (1989) Polymer 30:1814. doi: CrossRefGoogle Scholar
  18. 18.
    Vanderhart DL, Khoury F (1984) Polymer 25:1589. doi: CrossRefGoogle Scholar
  19. 19.
    Uehara HM, Aoike HT, Yamanobe T, Komoto T (2001) Polymer 42:5893. doi: CrossRefGoogle Scholar
  20. 20.
    Sheiko S, Frey H, Moller M (1992) Colloid Polym Sci 270:440. doi: CrossRefGoogle Scholar
  21. 21.
    Kwon YK, Boller A, Pyda M, Wunderlich B (2000) Polymer 41:6237. doi: CrossRefGoogle Scholar
  22. 22.
    Silverstein MS, Sadovsky J, Alon D, Wahad V (1999) J Appl Polym Sci 72:405. doi:10.1002/(SICI)1097-4628(19990418)72:3≤405::AID-APP10≥3.0.CO;2-ICrossRefGoogle Scholar
  23. 23.
    Zhang H, Shi M, Zhang J, Wang S (2003) J Appl Polym Sci 89:2757. doi: CrossRefGoogle Scholar
  24. 24.
    Yeh JT, Chang SS (2000) J Mater Sci 35:3227. doi: CrossRefGoogle Scholar
  25. 25.
    Yeh JT, Lin YT, Jiang HB (2003) J Appl Polym Sci 91:1559. doi: CrossRefGoogle Scholar
  26. 26.
    Yeh JT, Chang SS (2001) J Appl Polym Sci 79:1890. doi:10.1002/1097-4628(20010307)79:10≤1890::AID-APP180≥3.0.CO;2-TGoogle Scholar
  27. 27.
    Yeh JT, Lin YT, Chen KN (2003) J Appl Polym Sci 89:3728. doi: CrossRefGoogle Scholar
  28. 28.
    Chodak I (1998) Prog Polym Sci 23:1409. doi: CrossRefGoogle Scholar
  29. 29.
    Alon Y, Marom G (2004) Macromol Rapid Commun 25:1387. doi: CrossRefGoogle Scholar
  30. 30.
    Yeh JT, Chang SS, Yen MS (1998) J Appl Polym Sci 70:149. doi:10.1002/(SICI)1097-4628(19981003)70:1≤149::AID-APP15≥3.0.CO;2-2CrossRefGoogle Scholar
  31. 31.
    Yeh JT, Chang SS (2002) Polym Eng Sci 42:1558. doi: CrossRefGoogle Scholar
  32. 32.
    Jiang T, Shyu WD, Lin YT, Chen KN, Yeh JT (2003) Polym Eng Sci 43:1765. doi: CrossRefGoogle Scholar
  33. 33.
    Yeh JT, Lin YT, Chen KN (2003) J Polym Res 10:55. doi: CrossRefGoogle Scholar
  34. 34.
    Kanamoto T, Tsurta A, Tanana K, Takeda M, Porter RS (1988) Macromolecules 21:470. doi: CrossRefGoogle Scholar
  35. 35.
    Smook J, Pennings AJ (1982) J Appl Polym Sci 27:2209. doi: CrossRefGoogle Scholar
  36. 36.
    Hermans PH (1949) J Polym Sci 4:749. doi: CrossRefGoogle Scholar
  37. 37.
  38. 38.
    Lacroix FV, Schulte K (1999) Polymer 40:843. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Jen-Taut Yeh
    • 1
    • 2
    Email author
  • Shui-Chuan Lin
    • 1
  • Cheng-Wei Tu
    • 3
  • Kuo-Huang Hsie
    • 4
  • Feng-Chih Chang
    • 3
  1. 1.Graduate School of Polymer EngineeringNational Taiwan University of Science and TechnologyTaipeiTaiwan
  2. 2.Faculty of Chemistry and Material ScienceHubei UniversityWuhanChina
  3. 3.Institute of Applied ChemistryNational Chiao-Tung UniversityHsinchuTaiwan
  4. 4.Institute of Polymer Science and EngineeringNational Taiwan UniversityTaipeiTaiwan

Personalised recommendations