Advertisement

Journal of Materials Science

, Volume 43, Issue 14, pp 4862–4869 | Cite as

A low-cost method for producing high-performance nanocomposite thin-films made from silica and CNTs on cellulose substrates

  • Emanuela CalloneEmail author
  • Julia M. Fletcher
  • Giovanni Carturan
  • Rishi Raj
Article

Abstract

We show that thin films of silica loaded with 22 wt% of carbon nanotubes (CNTs) can be deposited on cellulose substrate via the sol–gel route by a well-controlled process. The high loadings are obtained by airbrush spraying of a diluted sol solution (which contained a much smaller concentration of CNTs) followed by drying at 200 °C. The films are nearly continuous despite the fibrous structure of the substrate. The high degree of connectivity of the stranded structure of the CNTs yields a specific electrical conductivity of 3 × 103 Ω−1 m−1. In contrast, films made with high loadings of carbon black have poor electrical conductivity. Results from mechanical tensile tests of samples are also reported. This economical method of producing CNT dispersed thin films could find application in catalysis, as electrodes in fuel cells and batteries, and in sensor technologies.

Keywords

Carbon Black Cellulose Fiber Cellulose Substrate Total Mass Loss Carbon Black Particle 

Notes

Acknowledgements

The authors thank Prof. Ing. A. Pegoretti and Dr. Matteo Traina for mechanical tests and useful discussions. Julie Fletcher received support by a grant from the National Science Foundation from the Ceramics Program of the Division of Materials Research: DMR-0502446.

References

  1. 1.
    Felten A, Bittencourt C, Pireaux JJ (2006) Nanotechnology 17:1954. doi: https://doi.org/10.1088/0957-4484/17/8/026 CrossRefGoogle Scholar
  2. 2.
    Thorat IV, Mathur V, Harb JN, Wheeler DR (2006) J Power Sources 162:673. doi: https://doi.org/10.1016/j.jpowsour.2006.06.032 CrossRefGoogle Scholar
  3. 3.
    Campbell IM (1988) Catalysis at surfaces. Kluwer Academic Publishers, LondonCrossRefGoogle Scholar
  4. 4.
    Rioux RM, Song H, Hoefelmeyer JD, Yang P, Somorjai GA (2005) J Phys Chem B 109(6):2192CrossRefGoogle Scholar
  5. 5.
    Jung LS, Campbell CT, Chinowsky TM, Mar MN, Yee SS (1998) Langmuir 14(19):5636CrossRefGoogle Scholar
  6. 6.
    Nigge U, Wiemhöfer H-D, Römer EWJ, Bouwmeester HJM, Schulte TR (2002) Solid State Ionics 146(1–2):163CrossRefGoogle Scholar
  7. 7.
    Keszei S, Matko S, Bertalan G, Anna P, Marosi G, Toth A (2005) Eur Polym J 41:697 doi: https://doi.org/10.1016/j.eurpolymj.2004.10.039 CrossRefGoogle Scholar
  8. 8.
    Cai LF, Mai YL, Rong MZ, Ruan WH, Zhang MQ (2007) eXPRESS Polym Lett 1(1):2CrossRefGoogle Scholar
  9. 9.
    Andersson P, Nilsson D, Svensson P-O, Chen M, Malmström A, Remonen T, Kugler T, Berggren M (2002) Adv Mater 14(20):16CrossRefGoogle Scholar
  10. 10.
    Aoki Y, Huang J, Kunitake T (2006) J Mater Chem 16:292. doi: https://doi.org/10.1039/b512225b CrossRefGoogle Scholar
  11. 11.
    Grafe T, Graham K (2003) Int Nonwov J 12:51Google Scholar
  12. 12.
    Trepte J, Bottcher H (2000) J Sol-Gel Sci Technol 19:691. doi: https://doi.org/10.1023/A:1008766807514 CrossRefGoogle Scholar
  13. 13.
    Mahltig B, Ffiedler D, Bottcher H (2004) J Sol-Gel Sci Technol 32:219. doi: https://doi.org/10.1007/s10971-004-5791-7 CrossRefGoogle Scholar
  14. 14.
    (a) Chou TP, Cao G (2003) J Sol-Gel Sci Technol 27:31. doi: https://doi.org/10.1023/A:1022675809404; (b) Downie R (2001) How to use an airbrush. Kalmbach Publishing Co., Waukesha, WICrossRefGoogle Scholar
  15. 15.
    Curtis CJ, Schulz DL, Miedaner A, Alleman J, Rivkin T, Perkins JD, Ginley DS (2001) Mater Res Soc Symp Proc 676:861CrossRefGoogle Scholar
  16. 16.
    (a) Watson KA, Smith JG Jr, Connell JW (2003) Space durable polyimide/carbon nanotube composite films for electrostatic charge mitigation. NASA Langley Technical Library Digital Repository, New York; (b) Baker GL, Ghosh RN, Osborn DJ III, Zhang P (2005) Fibre optical micro-detectors for oxygen sensing in power plants. DOE Quarterly Technical Report, New YorkGoogle Scholar
  17. 17.
    Gojny FH, Wichmann MHG, Fiedler B, Schulte K (2005) Comp Sci Technol 65:2300. doi: https://doi.org/10.1016/j.compscitech.2005.04.021 CrossRefGoogle Scholar
  18. 18.
    Vasenka J, Manne S, Giberson R, Marsh T, Henderson E (1993) Biophys J 65:992CrossRefGoogle Scholar
  19. 19.
    Schmid G (ed) (2004) Nanoparticles: from theory to application. Wiley-VCH Verlag, WeinheimGoogle Scholar
  20. 20.
    Deng Y, Deng C, Yang D, Wang C, Fu S, Zhang X (2005) Chem Commun 5548Google Scholar
  21. 21.
    Takasu Y, Kawaguchi T, Sugimoto W, Murakami Y (2003) Electrochim Acta 48:3861. doi: https://doi.org/10.1016/S0013-4686(03)00521-8 CrossRefGoogle Scholar
  22. 22.
    Péna-Alonso R, Sicurelli A, Callone E, Carturan G, Raj R (2007) J Power Sources 165:315. doi: https://doi.org/10.1016/j.jpowsour.2006.12.043 CrossRefGoogle Scholar
  23. 23.
    Campostrini R, Ischia M, Palmisano L (2003) J Therm Anal Calorim 71:997. doi: https://doi.org/10.1023/A:1023307100279 CrossRefGoogle Scholar
  24. 24.
    Sivananda SJ (1987) J Am Ceram Soc 70(11):C-298Google Scholar
  25. 25.
    Sanchez J, McCormick A (1992) J Phys Chem 96:8973. doi: https://doi.org/10.1021/j100201a051 CrossRefGoogle Scholar
  26. 26.
    Brinker CJ, Keefer KD, Schaefer DW, Ashley CS (1982) J Non-Cryst Solids 48:47. doi: https://doi.org/10.1016/0022-3093(82)90245-9 CrossRefGoogle Scholar
  27. 27.
    Li F, Wang Y, Wang D, Wei F (2004) Carbon 42:2375. doi: https://doi.org/10.1016/j.carbon.2004.02.025 CrossRefGoogle Scholar
  28. 28.
    Campostrini R, D’Andrea G, Carturan G, Ceccato R, Soraru’ GD (1996) J Mater Chem 6:585. doi: https://doi.org/10.1039/jm9960600585 CrossRefGoogle Scholar
  29. 29.
    Vinogradova E, Estrada M, Moreno A (2006) J Colloid Interface Sci 298:209. doi: https://doi.org/10.1016/j.jcis.2005.11.064 CrossRefGoogle Scholar
  30. 30.
    Pan G, Mark JE, Schaefer DW (2003) J Polym Sci B Polym Phys 41:3314. doi: https://doi.org/10.1002/polb.10695 CrossRefGoogle Scholar
  31. 31.
    Warren WL, Lenahan PM, Brinker CJ, Shaffer RG, Ashley CS, Reed ST (1990) Mater Res Soc Symp Proc 413Google Scholar
  32. 32.
    Hübert T, Shimamura A, Klyszcz A (2005) Mater Sci – Poland 23:1Google Scholar
  33. 33.
    Chen Y, Zhang Z, Sui X, Brennan JD, Brook MA (2005) J Mater Chem 15:3132. doi: https://doi.org/10.1039/b502959g CrossRefGoogle Scholar
  34. 34.
    Fan Z, Wei T, Luo G, Wei F (2005) J Mater Sci 40:5075CrossRefGoogle Scholar
  35. 35.
    Colbert DT (2003) Plastics Additives & CompoundingGoogle Scholar
  36. 36.
    Kasumov AY, Khodos II, Ajayan PM, Colliex C (1996) Europhys Lett 34:429. doi: https://doi.org/10.1209/epl/i1996-00474-0 CrossRefGoogle Scholar
  37. 37.
    Carturan G, Khandelwal N, Tognana L, Sglavo VM (2007) J Non-Cryst Solids 353:1540. doi: https://doi.org/10.1016/j.jnoncrysol.2007.01.037 CrossRefGoogle Scholar
  38. 38.
    Sglavo VM, Carturan G, Dal Monte R, Muraca M (1999) J Mater Sci 34:3587. doi: https://doi.org/10.1023/A:1004626632730 CrossRefGoogle Scholar
  39. 39.
    Christie JH, Woodhead IM (2002) Textile Res J 72:273. doi: https://doi.org/10.1177/004051750207200315 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Emanuela Callone
    • 1
    Email author
  • Julia M. Fletcher
    • 2
  • Giovanni Carturan
    • 1
  • Rishi Raj
    • 2
  1. 1.Department of Materials Engineering and Industrial TechnologiesUniversity of TrentoTrentoItaly
  2. 2.Department of Mechanical EngineeringUniversity of ColoradoBoulderUSA

Personalised recommendations