Advertisement

Journal of Materials Science

, Volume 43, Issue 17, pp 5685–5691 | Cite as

Computation of interface interactions and mechanical properties of HMX-based PBX with Estane 5703 from atomic simulation

  • Jijun XiaoEmail author
  • Hui Huang
  • Jinshan Li
  • Hang Zhang
  • Wei Zhu
  • Heming XiaoEmail author
Interface Science

Abstract

Atomic simulation was applied to investigate the interface interactions and mechanical properties of β-octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine (HMX)-based polymer-bonded explosive (PBX) with Estane 5703. The interface structure of HMX (100) crystal surface with Estane 5703 was analyzed using pair correlation function (PCF), and the interfacial binding energies between them were calculated. It is shown that there exist hydrogen bonds and electrostatic interactions on the interface. By calculating and comparing the bonds lengths and distributions for possible initial bonds fractured in detonation, it is known that the interactions do not affect the stability of the PBX. Moreover, the elastic constants for HMX and the HMX-based PBX were computed using static elastic constants analysis method, and the engineering moduli and Poisson ratios were derived by Reuss average. Based on the value of Cauchy pressure, it is indicated that the ductibility of crystalline HMX can be effectively improved by blending the polymer in small amount. The relevancy to shockwave stability for this PBX in detonation was discussed finally.

Keywords

Pair Correlation Function Cauchy Pressure General Force Field Condensed Phase Simulation Nonbond Parameter 

Notes

Acknowledgements

We gratefully thank the key Fund of China Academy of Engineering Physics (Grant No. 2004Z0503).

References

  1. 1.
    Gibbs TR, Popolato A, (eds) (1980) LASL explosive property data. University of California Press, BerkeleyGoogle Scholar
  2. 2.
    Dong HS, Zhou FF (1989) High energy explosives and correlative physical properties. Science Press, BeijingGoogle Scholar
  3. 3.
    Sun YB, Hui JM, Cao XM (1995) Military use blended explosives. Weapon Industry Press, BeijingGoogle Scholar
  4. 4.
    Geng JF, Lao YL (1991) J Beijing Univ Sci Tech 11:87Google Scholar
  5. 5.
    Van Oss CJ, Chaudhury MK, Good RJ (1988) Chem Rev 88:927CrossRefGoogle Scholar
  6. 6.
    Xu QL (1993) Energetic Mater (in Chinese) 1:1Google Scholar
  7. 7.
    Song HJ, Dong HS, Hao Y (2000) Energetic Mater (in Chinese) 8:104Google Scholar
  8. 8.
    Xiao HM, Li JS, Dong HS (2001) J Phys Org Chem 14(9):644CrossRefGoogle Scholar
  9. 9.
    Li JS, Xiao HM, Dong HS (2000) Explod Shock (in Chinese) 20:221Google Scholar
  10. 10.
    Xiao HM, Ju XH (2003) Intermolecular interactions in energetic systems (in Chinese). Science Press, BeijingGoogle Scholar
  11. 11.
    Sewell TD, Menicoff R, Bedrov D, Simith GD (2003) J Chem Phys 119:7417CrossRefGoogle Scholar
  12. 12.
    Gee RH, Roszak S, Balasubramanian K, Fried LE (2004) J Chem Phys 120:7059CrossRefGoogle Scholar
  13. 13.
    Yang XZ (2002) Molecular simulation and polymer materials (in Chinese). Science Press, BeijingGoogle Scholar
  14. 14.
    Milchev A, Binder K (1996) Macromolecules 29(1):343CrossRefGoogle Scholar
  15. 15.
    Wang XL, Lu ZY, Li ZS, Sun CC (2005) J Phys Chem B 109:17644CrossRefGoogle Scholar
  16. 16.
    Xiao JJ, Yong GY, Ji GF, Xiao HM (2005) Chin Sci Bull 50:21CrossRefGoogle Scholar
  17. 17.
    Xiao JJ, Huang YC, Hu YJ, Xiao HM (2005) Sci China B 48:504CrossRefGoogle Scholar
  18. 18.
    Xu XJ, Xiao HM, Xiao JJ, Zhu W, Huang H, Li JS (2006) J Phys Chem B 110:7203CrossRefGoogle Scholar
  19. 19.
    Dobratz BM (1981) Report No. UCRL-52997, 16 MarchGoogle Scholar
  20. 20.
    Sun H (1998) J Phys Chem B 102:7338CrossRefGoogle Scholar
  21. 21.
    Choi CS, Boutin HP (1970) Acta Crystallogr B 26:1235CrossRefGoogle Scholar
  22. 22.
    Chen CL, Chen HL, Lee CL, Shih JH (1994) Macromolecules 27:2087CrossRefGoogle Scholar
  23. 23.
    Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Oxford University Press, OxfordGoogle Scholar
  24. 24.
    Andersen HC (1980) J Chem Phys 72:2384CrossRefGoogle Scholar
  25. 25.
    Parrinello M, Rahman A (1981) J Appl Phys 52:7182CrossRefGoogle Scholar
  26. 26.
    Xiao HM (1993) The molecular orbital theory for nitrocompounds (in Chinese). National Defense Industry Press, BeijingGoogle Scholar
  27. 27.
    Xiao HM, Li YF (1996) The bond and electronic structure for metal azides (in Chinese). Science Press, BeijingGoogle Scholar
  28. 28.
    Botcher TR, Wright CA (1993) J Phys Chem 97:9149CrossRefGoogle Scholar
  29. 29.
    Choi M, Kim H, Chung C (1995) J Phys Chem 99:15785CrossRefGoogle Scholar
  30. 30.
    Luty T, Ordon P, Eckhardt CJ (2002) J Chem Phys 117:1775CrossRefGoogle Scholar
  31. 31.
    Weiner JH (1983) Statistical mechanics of elasticity. John Wiley, New YorkGoogle Scholar
  32. 32.
    Watt JP, Davies GF, O’Connell RJ (1976) Rev Geophys Space Phys 14(4):541CrossRefGoogle Scholar
  33. 33.
    Stevens LL, Eckhardt CJ (2005) J Chem Phys 122:174701CrossRefGoogle Scholar
  34. 34.
    Gilman JJ (1995) Philos Mag B 71:1057CrossRefGoogle Scholar
  35. 35.
    Dick JJ (1984) Appl Phys Lett 44:859CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Institute of Molecules and Materials Computation, School of Chemical EngineeringNanjing University of Science and TechnologyNanjingPeople’s Republic of China
  2. 2.Institute of Chemical MaterialsChina Academy of Engineering PhysicsMianyangPeople’s Republic of China

Personalised recommendations