Advertisement

Journal of Materials Science

, Volume 43, Issue 14, pp 4820–4827 | Cite as

Poisson coefficient of open cellular solids subject to structural anisotropy

  • S. Guessasma
Article

Abstract

The Poisson coefficients of a 3D cellular solid are calculated as function of structure characteristics. A significant structural anisotropy is introduced by considering ellipsoid voids where their elongation and orientation are controlled using the random sequential addition (RSA) algorithm. The relative density of the material is varied between 0.1 and 0.3 in order to obtain an open cell structure. Finite element calculation is performed to calculate the six Poisson coefficients of the material. Predicted results show that all quantities are not independent and that three independent coefficient sets can be related to the ratio of the fully oriented ellipsoids and the elongation parameters. No clear correlation can be derived between the Poisson coefficients and the relative density suggesting a fixed-point effect. It seems that some coefficients are more sensitive to the Poisson coefficient of the solid phase, especially under those conditions where the percolation of the solid, in the direction of main alignment, is the largest one.

Keywords

Relative Density Poisson Ratio Poisson Coefficient Rigid Body Displacement Plateau Border 

References

  1. 1.
    Gibson LJ, Ashby MF (1997) Cellular solids. Pergamon Press Ltd, CambridgeCrossRefGoogle Scholar
  2. 2.
    Hashin Z, Shrikman S (1963) J Mech Phys Solids 11:127. doi: https://doi.org/10.1016/0022-5096(63)90060-7 CrossRefGoogle Scholar
  3. 3.
    Zhu HX, Knott JF, Mills NJ (1997) J Mech Phys Solids 45(3):319. doi: https://doi.org/10.1016/S0022-5096(96)00090-7 CrossRefGoogle Scholar
  4. 4.
    Roberts AP, Garboczi EJ (2002) Proc R Soc Lond A Math Phys Eng Sci 458(2021):1033CrossRefGoogle Scholar
  5. 5.
    Tagarielli VL, Deshpande VS, Fleck NA, Chen C (2005) Int J Mech Sci 47(4–5):666. doi: https://doi.org/10.1016/j.ijmecsci.2004.11.010 CrossRefGoogle Scholar
  6. 6.
    Roberts AP, Garboczi EJ (2002) J Mech Phys Solids 50(1):33. doi: https://doi.org/10.1016/S0022-5096(01)00056-4 CrossRefGoogle Scholar
  7. 7.
    Sherwood JD (1997) J Phys A: Math Gen 30:L839. doi: https://doi.org/10.1088/0305-4470/30/24/004 CrossRefGoogle Scholar
  8. 8.
    Guessasma S, Babin P, Della Valle G, Dendievel R (2008) Int J Solids Struct 45(10):2881. doi: https://doi.org/10.1016/j.ijsolstr.2008.01.007 CrossRefGoogle Scholar
  9. 9.
    Donev A, Cisse I, Sachs D, Variano EA, Stillinger FH, Connelly R, Torquato S, Chaikin PM (2004) Science 303:990. doi: https://doi.org/10.1126/science.1093010 CrossRefGoogle Scholar
  10. 10.
    Silva MJ, Gibson LJ (1997) Int J Mech Sci 39(5):549. doi: https://doi.org/10.1016/S0020-7403(96)00065-3 CrossRefGoogle Scholar
  11. 11.
    Chen C, Lu TJ, Fleck NA (1999) J Mech Phys Solids 47(11):2235. doi: https://doi.org/10.1016/S0022-5096(99)00030-7 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.INRANantesFrance

Personalised recommendations