Journal of Materials Science

, 43:6758 | Cite as

Fibrillar polymer–polymer composites: morphology, properties and applications

Stretching the Endurance Boundary of Composite Materials: Pushing the Performance Limit of Composite Structures


Micro- or nano-fibrillar composites (MFCs or NFCs) are created by blending two homopolymers (virgin or recycled) with different melting temperatures such as polyethylene (PE) and poly(ethylene terephthalate) (PET), and processing the blend under certain thermo-mechanical conditions to create in situ fibrils of the polymer that has the higher-melting temperature. These resulting fibrillar composites have been reported to possess excellent mechanical properties and can have wide ranging applications with suitable processing under controlled conditions. However, the properties and applications very much depend on the morphology of created polymer fibrils and their thermal stability. The present paper develops an understanding of the mechanism of micro-/nano-fibril formation in PE/PET and polypropylene (PP)/PET blends by studying their morphology at various stages of extrusion and drawing. It is revealed that this subsequent mechanical processing stretches the polymer chains and creates fibrils of very high aspect ratios, thus resulting in superior mechanical performance of the composites compared to the raw blends. The study also identifies the primary mechanical properties of the main types of MFCs, as well as quantifying their enhanced resistance to oxygen permeability. Furthermore, the failure phenomena of these composites are studied via application of the modified Tsai–Hill criterion. In addition to their usage as input materials in different manufacturing processes, possible applications of these fibrillar composites in two different areas are also discussed, namely food packaging with controlled oxygen barrier properties and biomedical tissue scaffolding. Results indicate a significant scope for using these materials in both areas.


Fibril LDPE LLDPE Constituent Polymer Immiscible Blend 



The authors wish to acknowledge the support of the Foundation for Research, Science and Technology New Zealand for their sponsorship of this work through Grant #UOAX0406.


  1. 1.
    Utracki LA, Shi ZH (1992) Polym Eng Sci 32(24):1824CrossRefGoogle Scholar
  2. 2.
    Shi ZH, Utracki LA (1992) Polym Eng Sci 32(24):1834CrossRefGoogle Scholar
  3. 3.
    Bordereau V et al (1992) Polym Eng Sci 32(24):1846CrossRefGoogle Scholar
  4. 4.
    Huneault MA, Shi ZH, Utracki LA (1995) Polym Eng Sci 35(1):115CrossRefGoogle Scholar
  5. 5.
    Padilla-Lopez H et al (2003) Polym Eng Sci 43(10):1646CrossRefGoogle Scholar
  6. 6.
    Tager AA (1977) Polym Sci USSR (English Translation of Vysokomolekulyarnye Soyedineniya Series A) 19(8):1893Google Scholar
  7. 7.
    Woodcock SE, Johnson WC, Chen Z (2004) Polym News 29(6):176CrossRefGoogle Scholar
  8. 8.
    Plate NA, Litmanovich AD, Kudryavtsev YV (2004) Vysokomolekularnye Soedineniya. Ser. C Kratkie Soobshcheniya 46(11):1834Google Scholar
  9. 9.
    Paul DR, Barlow JW (1979) In: Cooper SL, Estes GM (eds) Multiphase polymers. Anaheim, California, American Chemical Society (Adv in Chem Ser 176), Washington, DCGoogle Scholar
  10. 10.
    Lipatov YS (1978) Polym Sci USSR (English Translation of Vysokomolekulyarnye Soyedineniya Ser A) 20(1):1Google Scholar
  11. 11.
    Mark J (2004) Physical properties of polymers. Cambridge: Cambridge University Press, 519 pGoogle Scholar
  12. 12.
    Li Z-M et al (2002) Mater Res Bull 37(13):2185CrossRefGoogle Scholar
  13. 13.
    Mingbo Yang ZL, Feng J (1998) Polym Eng Sci 38(6):879CrossRefGoogle Scholar
  14. 14.
    Migler KB (2001) Phys Rev Lett 86(6):1023CrossRefGoogle Scholar
  15. 15.
    Fuchs C, Bhattacharyya D, Fakirov S (2006) Compos Sci Technol 66(16):3161CrossRefGoogle Scholar
  16. 16.
    Fakirov S, Evstatiev M (1994) Adv Mater 6(5):395CrossRefGoogle Scholar
  17. 17.
    Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, IthacaGoogle Scholar
  18. 18.
    Fakirov S (1990) Solid state behaviour in linear polyesters and polyamides. Prentice Hall, NJGoogle Scholar
  19. 19.
    Fuchs C et al (2006) Compos Interf 13(4–6):331CrossRefGoogle Scholar
  20. 20.
    Fakirov S, Evstatiev M, Friedrich K (2002) In: Fakirov S (ed) Handbook of thermoplastic polyesters: homopolymers, copolymers, blends and composites. Wiley-VCH, Weinheim, 1377 ppGoogle Scholar
  21. 21.
    Ihm DW, Hiltner A, Baer E (1991) Microfiber systems a review, High performance polymers. Munich, Hanser, pp 280–327Google Scholar
  22. 22.
    Friedrich K et al (2005) Compos Sci Technol 65(1):107CrossRefGoogle Scholar
  23. 23.
    Fakirov S et al (2004) J Macromol Sci Phys 43B(4):775Google Scholar
  24. 24.
    Evstatiev M, Fakirov S, Friedrich K (1995) Appl Compos Mater 2(2):93CrossRefGoogle Scholar
  25. 25.
    Evstatiev M et al (2002) Polym Eng Sci 42(4):826CrossRefGoogle Scholar
  26. 26.
    Li Z-M et al (2003) Polym Eng Sci 43(3):615CrossRefGoogle Scholar
  27. 27.
    Li Z-M et al (2002) Mater Lett 56(5):756CrossRefGoogle Scholar
  28. 28.
    Li Z-M et al (2004) J Polym Sci B Polym Phys 42(22):4095CrossRefGoogle Scholar
  29. 29.
    Taepaiboon P et al (2006) J Appl Polym Sci 102(2):1173CrossRefGoogle Scholar
  30. 30.
    Friedrich K et al (2002) J Mater Sci 37(20):4299CrossRefGoogle Scholar
  31. 31.
    Krumova M et al (2005) Progress Colloid Polym Sci 130:167Google Scholar
  32. 32.
    Utracki LA (2002) Introduction to polymer blends. In: Utracki LA (ed) Polymer blends handbook. Kluwer Academic, Dordrecht, pp 1–122Google Scholar
  33. 33.
    Chung CI, Todd D, Case C (2001) In: Vlachopoulos J, Wagner JR Jr (eds) The SPE guide on extrusion technology and troubleshooting. Society of Plastics Engineers, Brookfield, pp 9.1–9.4Google Scholar
  34. 34.
    Leung KL, Easteal AJ, Bhattacharyya D (2007) Key Eng Mater 334–335:161CrossRefGoogle Scholar
  35. 35.
    Lin XD et al (2004) J Appl Polym Sci 93(4):1989CrossRefGoogle Scholar
  36. 36.
    Friedrich K, Fakirov S, Zhang Z (eds) (2005) Polymer composites: from nano- to macro-scale. Springer, New YorkGoogle Scholar
  37. 37.
    Fakirov S, Evstatiev M, Petrovich S (1993) Macromolecules 26(19):5219CrossRefGoogle Scholar
  38. 38.
    Fakirov S, Evstatiev M, Friedrich K (2000) In: Paul DR, Bucknall CB (eds) Polymer blends: performance. Wiley and Sons, New York, pp 455–475Google Scholar
  39. 39.
    Fakirov S, Evstatiev M, Friedrich K (1998) In: Radusch HJ, Vogel J (eds) Polymerwerkstoffe 1998: Verarbeitung|Anwendung|Recycling. Martin-Luther-Universitaet Halle-Wittenberg, Halle/Saale, pp 125–133Google Scholar
  40. 40.
    Evstatiev M, Fakirov S, Friedrich K (2000) In: Cunha AM, Fakirov S (eds) Structure development during polymer processing. Kluwer Academic Publisher, Boston, pp 311–325Google Scholar
  41. 41.
    Mallick PK (ed) (1997) Composites engineering handbook. Marcel Dekker, New York, p 1249Google Scholar
  42. 42.
    Halpin JC, Kardos JL (1976) Polym Eng Sci 16:344CrossRefGoogle Scholar
  43. 43.
    Lin RJT et al (2007) In: 15th international conference on composites or nano engineering (ICCE–15), Haikou, Hainan Island, ChinaGoogle Scholar
  44. 44.
    Lin RJT, Bhattacharyya D, Fakirov S (2007) Key Eng Mater 334–335:349Google Scholar
  45. 45.
    Lin RJT, Bhattacharyya D, Fakirov S (2006) Intl J Modern Phys B 20(25–27):4613CrossRefGoogle Scholar
  46. 46.
    Shields RJ, Bhattacharyya D, Fakirov S (2008) Compos A Appl Sci Manuf 39(6):940Google Scholar
  47. 47.
    Gajdos J et al (2001) Polym Test 20:49CrossRefGoogle Scholar
  48. 48.
    Pino M, Duckett RA, Ward IM (2005) Polymer 46(13):4882Google Scholar
  49. 49.
    Liu RYF et al (2004) J Appl Polym Sci 94:671CrossRefGoogle Scholar
  50. 50.
    Sok RM (1994) Permeation of small molecules across a polymer membrane: a computer simulation study. University of Groningen, Groningen, pp 5–12Google Scholar
  51. 51.
    Massey LK (2003) Permeability properties of plastics and elastomers—a guide to packaging and barrier materials, 2nd edn. William Andrew Publishing, NorwichGoogle Scholar
  52. 52.
    Laverde G (2007) SPE Division 44 Newsletter 6(2):1Google Scholar
  53. 53.
    Griffith LG, Naughton G (2002) Science 295:1009CrossRefGoogle Scholar
  54. 54.
    Mooney DJ, Langer RS (1995) In: Bronzino JD (ed) The biomedical engineering handbook. CRC Press, Boca RatonGoogle Scholar
  55. 55.
    Vacanti JP (1988) Arch Surg 123:545Google Scholar
  56. 56.
    Mikos AG, Temenoff JS (2000) Electronic J Biotechnol 3:114Google Scholar
  57. 57.
    Evstatiev M, Nicolov N, Fakirov S (1996) Polymer 37(20):4455CrossRefGoogle Scholar
  58. 58.
    Fakirov S et al (2007) J Macromol Sci Phys 46:183CrossRefGoogle Scholar
  59. 59.
    Fakirov S, Bhattacharyya D, Shields RJ (2008) Coll Surf A Physicochem Eng Aspect 313–314:2CrossRefGoogle Scholar
  60. 60.
    Bhattacharyya D, Fakirov S (2008) In: Karger-Kocsis J, Fakirov S (eds) Nano- and micromechanics of polymers, blends and composites. Hanser, Munich, pp 167–205Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Centre for Advanced Composite Materials and Department of Mechanical EngineeringThe University of AucklandAucklandNew Zealand

Personalised recommendations