Hierarchical modelling of a polymer matrix composite
- 215 Downloads
- 10 Citations
Abstract
A hierarchical modelling scheme to predict the properties of a polymer matrix composite is introduced. The stress–strain curves of amine-cured tetraglycidyl 4,4′-diaminodiphenylmethane (TGDDM) cured have been predicted using group interaction modelling (GIM). The GIM method, originally applied primarily to linear polymers, has been significantly extended to give accurate, consistent results for TGDDM, a highly crosslinked two-component matrix. The model predicts a complete range of temperature-dependent properties, from fundamental energy contributions, through engineering moduli to full stress–strain curves through yield. The predicted properties compare very well with experiment. Using the GIM-predicted TGDDM stress–strain curve, a 3D finite element model is used to obtain strain concentration factors (SCF) of fibres adjacent to a fibre break in a unidirectional (UD) composite. The strain distribution among the intact neighbouring fibres is clearly affected by the yielding mechanism in the resin matrix. A Monte Carlo simulation is carried out to predict the tensile failure strain of a single composite layer with the thickness equal to the fibre ineffective length. The effect of matrix shear yielding is introduced to the model through the SCF of surviving fibres adjacent to the fibre-break. The tensile failure strain of the composite is then predicted using a statistical model of a chain of composite layers.
Keywords
Cohesive Energy Composite Layer Applied Strain Failure Strain Break FibreNotes
Acknowledgements
This work was carried out as part of Weapons and Platform Effectors Domain of the MoD Research Program. The authors would like to thank the UK EPSRC for part funding of this project.
References
- 1.Pham HQ, Marks MJ (2002) Epoxy resins. In: Encyclopedia of polymer science and technology. WileyGoogle Scholar
- 2.Gupta A, Cizmecioglu M, Coulter D, Liang RH, Yavrouian A, Tsay FD, Moacanin J (1983) J Appl Polym Sci 28:1011. doi: https://doi.org/10.1002/app. 1983.070280309 CrossRefGoogle Scholar
- 3.Jones FR (2005) In: Soutis C, Beaumont PWR (eds) Multi-scale modelling of composite material systems: the art of predictive damage modelling. Woodhead publishing limited, Cambridge, p 528Google Scholar
- 4.Porter D (1995) Group interaction modelling of polymer properties. Marcel Dekker, New YorkGoogle Scholar
- 5.Foreman JP, Porter D, Behzadi S, Travis KP, Jones FR (2006) J Mater Sci 41:6631. doi: https://doi.org/10.1007/s10853-006-0202-9 CrossRefGoogle Scholar
- 6.Gumen VR, Jones FR, Attwood D (2001) Polymer 42:5717. doi: https://doi.org/10.1016/S0032-3861(00)00930-7 CrossRefGoogle Scholar
- 7.Liu HP, Uhlherr A, Bannister MK (2004) Polymer 45:2051. doi: https://doi.org/10.1016/j.polymer.2004.01.008 CrossRefGoogle Scholar
- 8.Porter D, Vollrath F, Shao Z (2005) Eur Phys J E 16:199. doi: https://doi.org/10.1140/epje/e2005-00021-2 CrossRefGoogle Scholar
- 9.Vollrath F, Porter D (2006) Appl Phys A-Mater Sci Process 82:205. doi: https://doi.org/10.1007/s00339-005-3437-4 CrossRefGoogle Scholar
- 10.Rosen BW (1964) AIAA J 2:1985CrossRefGoogle Scholar
- 11.Zweben C (1968) AIAA J 6:2325CrossRefGoogle Scholar
- 12.Zweben C, Rosen W (1970) J Mech Phys Solids 18:189. doi: https://doi.org/10.1016/0022-5096(70)90023-2 CrossRefGoogle Scholar
- 13.Lane R, Hayes SA, Jones FR (2001) Compos Sci Technol 61:565. doi: https://doi.org/10.1016/S0266-3538(00)00229-3 CrossRefGoogle Scholar
- 14.Behzadi S, Curtis PT, Jones FR (2007) Proceedings of ICCM-16, KyotoGoogle Scholar
- 15.Hedgepeth JM, van Dyke P (1967) J Compos Mater 1:294CrossRefGoogle Scholar
- 16.Wada A, Fukuda H (1999) Compos Sci Technol 59:89. doi: https://doi.org/10.1016/S0266-3538(98)00052-9 CrossRefGoogle Scholar
- 17.LienKamp M, Schwartz P (1993) Compos Sci Technol 46:139. doi: https://doi.org/10.1016/0266-3538(93)90169-H CrossRefGoogle Scholar
- 18.Fukuda H, Kawata K (1977) Fibre Sci Technol 10:53. doi: https://doi.org/10.1016/0015-0568(77)90028-8 CrossRefGoogle Scholar
- 19.Manders PW, Bader MG, Chou TW (1982) Fibre Sci Technol 17:183. doi: https://doi.org/10.1016/0015-0568(82)90003-3 CrossRefGoogle Scholar
- 20.Ochiai S, Osamura K (1988) J of Mater Sci 23:886. doi: https://doi.org/10.1007/BF01153984 CrossRefGoogle Scholar
- 21.Curtin WA, Takeda N (1998) J Compos Mater 32:2060CrossRefGoogle Scholar
- 22.Curtis PT (1986) Compos Sci Technol 27:63. doi: https://doi.org/10.1016/0266-3538(86)90063-1 CrossRefGoogle Scholar
- 23.Williams JG (1979) J Appl Polym Sci 23:3433. doi: https://doi.org/10.1002/app.1979.070231201 CrossRefGoogle Scholar
- 24.ANSYS Inc.: reference manual, 2006Google Scholar
- 25.Nedele MR (1996) In: Department of Aerospace Engineering, University of Bristol, BristolGoogle Scholar
- 26.Box GEP, Muller ME (1958) Ann Math Stat 29:610. doi: https://doi.org/10.1214/aoms/1177706645 CrossRefGoogle Scholar
- 27.Bader MG, Priest AM (1982) ICCM-IV, Tokyo, pp 1159–1136Google Scholar
- 28.Tarasov VV (1965) Russ J Phys Chem 39:1109Google Scholar
- 29.Tarasov VV (1953) Zh Fiz Khim 27:1430Google Scholar
- 30.Kozey VV, Kumar S (1994) J Mater Res 9:2717. doi: https://doi.org/10.1557/JMR.1994.2717 CrossRefGoogle Scholar
- 31.Phoenix SL, Schwartz P, Robinson HH (1988) Compos Sci Technol 32:81. doi: https://doi.org/10.1016/0266-3538(88)90001-2 CrossRefGoogle Scholar
- 32.Behzadi S (2006) PhD thesis, Department of Engineering Materials, University of Sheffield, SheffieldGoogle Scholar
- 33.Caballero-Martinez MI (2004) PhD thesis, Department of Engineering Materials, University of Sheffield, Sheffield, p 217Google Scholar
- 34.Behzadi S, Jones FR (2005) J Macromol Sci-Part B: Phys 44:993CrossRefGoogle Scholar