Journal of Materials Science

, Volume 43, Issue 23–24, pp 7372–7378 | Cite as

Enhanced superplasticity of magnesium alloy AZ31 obtained through equal-channel angular pressing with back-pressure

  • R. LapovokEmail author
  • Y. Estrin
  • M. V. Popov
  • S. Rundell
  • T. Williams
Ultrafine-Grained Materials


Excellent superplastic elongations (in excess of 1,200%) were achieved in a commercial cast AZ31 alloy processed by low temperature equal-channel angular pressing (ECAP) with a back-pressure to produce a bimodal grain structure. In contrast, AZ31 alloy processed by ECAP at temperatures higher than 200 °C showed a reasonably uniform grain structure and relatively low ductility. It is suggested that a bimodal grain structure is advantageous because the larger grains contribute to strain hardening thus delaying the onset of necking, while grain boundary sliding associated with small grains provides a stabilizing effect due to enhanced strain rate sensitivity.


Magnesium Alloy Solution Heat Treatment Tensile Ductility Magnesium Alloy AZ31 Superplastic Behaviour 



This work was supported by the Australian Research Council through Linkage International Grant no. LX0668485. The authors would like to express their gratitude to Professor T.G. Langdon for useful discussions.


  1. 1.
    Watanabe H, Tsutsui H, Mukai T et al (2000) Mater Sci Forum 350:171CrossRefGoogle Scholar
  2. 2.
    Wu X, Liu Y, Hao H (2001) Mater Sci Forum 357–359:363CrossRefGoogle Scholar
  3. 3.
    Watanabe H, Tsutsui H, Mukai T et al (2001) Int J Plast 17(3):387. doi: CrossRefGoogle Scholar
  4. 4.
    Lin HK, Huang JC (2002) Mater Trans 43(10):2424. doi: CrossRefGoogle Scholar
  5. 5.
    Bussiba A, Artzy AB, Shtechman A et al (2001) Mater Sci Eng A 302(1):56. doi: CrossRefGoogle Scholar
  6. 6.
    Watanabe H, Mukai T, Ishikawa K et al (1999) Keikinzoku/J Jpn Inst Light Metals 49(8):401 (in Japanese)CrossRefGoogle Scholar
  7. 7.
    Chuvil′deev VN, Kopylov VI, Gryaznov MY et al (2003) Doklady Akademii Nauk 391(1):47 (in Russian)Google Scholar
  8. 8.
    Mukai T, Yamanoi M, Watanabe H et al (2001) Scripta Mater 45(1):89. doi: CrossRefGoogle Scholar
  9. 9.
    Lin HK, Huang JC et al (2005) Mater Sci Eng A 402(1–2):250. doi: CrossRefGoogle Scholar
  10. 10.
    Agnew SR, Stoica GM, Chen LJ et al (2002) In: Zhu YT et al (eds) Ultrafine grained materials II. TMS annual meeting, pp 643Google Scholar
  11. 11.
    Kim WJ, Chung SW, Chung CS et al (2001) Acta Mater 49:3337. doi: CrossRefGoogle Scholar
  12. 12.
    Yi SB, Zaefferer S, Brokmeier H-G (2006) Mater Sci Eng A 424:275. doi: CrossRefGoogle Scholar
  13. 13.
    Tan JC, Tan MJ (2003) Mater Sci Eng A 339:81. doi: CrossRefGoogle Scholar
  14. 14.
    Yin DL, Zhang KF, Wang GF et al (2005) Mater Lett 59:1714. doi: CrossRefGoogle Scholar
  15. 15.
    Lapovok R, Estrin Y, Popov MV et al (2008) Adv Eng Mater 10(5):429CrossRefGoogle Scholar
  16. 16.
    Lapovok R, Thomson PF, Cottam R et al (2005) J Mater Sci 40(7):1699. doi: CrossRefGoogle Scholar
  17. 17.
    Lapovok R, Thomson PF, Cottam R et al (2005) J Mater Res 20:1375. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • R. Lapovok
    • 1
    Email author
  • Y. Estrin
    • 1
    • 2
  • M. V. Popov
    • 3
  • S. Rundell
    • 1
  • T. Williams
    • 4
  1. 1.ARC Centre of Excellence for Design in Light Metals, Department of Materials EngineeringMonash UniversityClaytonAustralia
  2. 2. CSIRO Division of Materials Science and EngineeringClaytonAustralia
  3. 3.IWW, TU ClausthalClausthal-ZellerfeldGermany
  4. 4.Monash Centre for Electron MicroscopyMonash UniversityClaytonAustralia

Personalised recommendations