Journal of Materials Science

, Volume 43, Issue 15, pp 5168–5184 | Cite as

Energy absorption and damage propagation in 2D triaxially braided carbon fiber composites: effects of in situ matrix properties

  • Amit G. Salvi
  • Anthony M. WaasEmail author
  • Ari Caliskan


Results from an experimental program to investigate the propagation of damage and energy dissipation in 2D triaxially braided carbon fiber textile composites (2DTBC) under static conditions are reported. A methodology is presented in which classical concepts from fracture mechanics are generalized to address damage growth in an orthotropic and heterogeneous structural material. Along with results from the experimental program, a novel numerical technique that employs ideas from cohesive zone modeling, and implemented through the use of finite-element analysis, is also presented. The inputs that are required for the discrete cohesive zone model (DCZM) are identified. Compact tension specimen fracture tests and double notched tension tests were carried out to measure the fracture energy (GIc), and the maximum cohesive strength (σc), of the 2DTBC. The DCZM modeling strategy was independently verified by conducting single edge notched three-point bend tests using a modified three-point bend test fixture. The experimental and numerical analyses were carried out for two different types of 2DTBC made from the same textile architecture but infused with two different resin systems to validate the proposed methodology.


Fracture Energy Linear Elastic Fracture Mechanic Cohesive Zone Cohesive Strength Compact Tension Specimen 



The authors are grateful for the financial sponsorship of the Automotive Composites Consortium, Energy Management Working Group, and the Department of Aerospace Engineering, University of Michigan. The authors acknowledge that this research was supported, in whole or in part, by Department of Energy cooperative agreement no. DE-FC05-95OR22363. Such support does not constitute an endorsement by the Department of Energy of the views expressed herein.


  1. 1.
    Beard SJ, Chang FK (2002) Int J Crashworthiness 7(2):191. doi: CrossRefGoogle Scholar
  2. 2.
    Quek SC, Waas AM, Shahwan KW, Agaram V (2003) Int J Mech Sci 45(6–7):1077. doi: CrossRefGoogle Scholar
  3. 3.
    Haywood JB (2006) Sci Am 295(3):94CrossRefGoogle Scholar
  4. 4.
    Reifsnider KL, Case SW (2002) Damage tolerance and durability of material systems. WileyGoogle Scholar
  5. 5.
    Gonzales L, Knauss WG (2002) Int J Fract 118(4):363. doi: CrossRefGoogle Scholar
  6. 6.
    Hertzberg J (1983) Deformation and fracture mechanics of engineering materials. WileyGoogle Scholar
  7. 7.
    Xie D, Biggers SB Jr (2006) Eng Fract Mech 73:771. See also, Xie D, Biggers SB Jr (2006) Finite Elem Anal Design 42(11):977. doi: CrossRefGoogle Scholar
  8. 8.
    Xie D, Biggers SB Jr (2006) Eng Fract Mech 73:786. doi: CrossRefGoogle Scholar
  9. 9.
    Xie D, Waas AM, Shahwan KW, Schroeder JA, Boeman RG (2004) Comput Model Eng Sci 6:515Google Scholar
  10. 10.
    Xie D, Waas AM (2006) Eng Fract Mech 73:1783. doi: CrossRefGoogle Scholar
  11. 11.
    Xie D, Chung J, Waas AM, Shahwan KW, Schroeder JA, Boeman RG, Kunc V, Klett LB (2005) Int J Fract 134:231. doi: CrossRefGoogle Scholar
  12. 12.
    Xie D, Salvi AG, Sun C, Waas AM, Caliskan A (2006) J Compos Mater 40:2025. doi: CrossRefGoogle Scholar
  13. 13.
    Pietruszczak S, Mroz Z (1981) Int J Numer Methods Eng 17:327. doi: CrossRefGoogle Scholar
  14. 14.
    Ungsuwarungsri T, Knauss WG (1987) Int J Fract 5:221. See also PhD Thesis (1985) Aeronautics Department, Caltech, Pasadena, CAGoogle Scholar
  15. 15.
    Tvergaard V, Hutchinson JW (1992) J Mech Phys Solids 40:1377. doi: CrossRefGoogle Scholar
  16. 16.
    Schellekens JCJ, de Borst R (1993) Int J Numer Methods Eng 36:43. doi: CrossRefGoogle Scholar
  17. 17.
    Xu XP, Needleman A (1994) J Mech Phys Solids 42:1397. doi: CrossRefGoogle Scholar
  18. 18.
    Camacho GT, Ortiz M (1996) Int J Solids Struct 33:2899. doi: CrossRefGoogle Scholar
  19. 19.
    Reedy ED, Mello FJ, Guess TR (1997) J Compos Mater 31:812CrossRefGoogle Scholar
  20. 20.
    Pandolfi A, Krysl P, Ortiz M (1999) Int J Fract 95:279. doi: CrossRefGoogle Scholar
  21. 21.
    Espinosa HD, Zavattieri PD, Dwivedi SK (1998) J Mech Phys Solids 46:1909. doi: CrossRefGoogle Scholar
  22. 22.
    Zavattieri PD, Raghuram PV, Espinosa HD (1002) J Mech Phys Solids 49:27CrossRefGoogle Scholar
  23. 23.
    Li S, Thouless MD, Waas AM, Schroeder JA, Zavattieri PD (2006) Eng Fract Mech 73:64CrossRefGoogle Scholar
  24. 24.
    Gustafson PA, Waas AM (2007) “Experimental results and numerical analysis of high temperature bonded composite joints: Kriging sensitivity analysis of common adhesive tests”. ASME Congress presentation, NovemberGoogle Scholar
  25. 25.
    Anderson TL (1995) Fracture mechanics, 2nd edn. CRC Press LLCGoogle Scholar
  26. 26.
    Salvi AG, Waas AM, Caliskan A (2004) Polym Compos 25(4):397CrossRefGoogle Scholar
  27. 27.
    Salvi AG, Waas AM, Caliskan A (2004) Compos Sci Technol 64:83CrossRefGoogle Scholar
  28. 28.
    Turner TA, Warrior NA, Robitaille F (2005) Compos A Appl Sci Manuf 36(9):1291CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Amit G. Salvi
    • 1
  • Anthony M. Waas
    • 1
    Email author
  • Ari Caliskan
    • 2
  1. 1.Department of Aerospace EngineeringUniversity of MichiganAnn ArborUSA
  2. 2.Vehicle Design and R&A DepartmentFord Motor CompanyDearbornUSA

Personalised recommendations