Advertisement

Journal of Materials Science

, Volume 43, Issue 14, pp 4811–4819 | Cite as

Hybridisation effect on flexural properties of single- and double-gated injection moulded acrylonitrile butadiene styrene (ABS) filled with short glass fibres and glass beads particles

  • S. HashemiEmail author
Article

Abstract

The present study investigated the effect of hybridisation on flexural strength and modulus of single-gated (SG) and double-gated (DG) injection moulded acrylonitrile butadiene styrene (ABS) polymer reinforced with both short glass fibres (GF) and spherical glass beads (GB). It was observed that flexural strength and modulus of SG and DG ABS/GF/GB hybrids increased with increasing the total concentration of the glass in the hybrid as well as the concentration of glass fibres in the hybrid (χf). Results indicated that hybrid flexural properties for both SG and DG mouldings obey the simple rule of mixtures. The presence of weldlines in DG mouldings had a negative effect on flexural properties. It was noted that weldline integrity factor (weld to unweld property ratio) for flexural modulus and strength decreased with increasing the total concentration of the glass in the hybrid. However, whilst weldline integrity factor for flexural modulus decreased with increasing χf, weldline integrity factor for flexural strength showed no significant variation with respect χf. Weldline integrity factors indicated that the hybrid flexural strength is more affected by the presence of weldline than the hybrid flexural modulus.

Keywords

Flexural Strength Acrylonitrile Butadiene Styrene Flexural Modulus Flexural Property Fibre Concentration 

References

  1. 1.
    Hashemi S, Gilbride MT, Hodgkinson JM (1996) J Mater Sci 32:5017. doi: https://doi.org/10.1007/BF00355900 CrossRefGoogle Scholar
  2. 2.
    Din KJ, Hashemi S (1997) J Mater Sci 32:375. doi: https://doi.org/10.1023/A:1018553400266 CrossRefGoogle Scholar
  3. 3.
    Chrysostomou A, Hashemi S (1998) J Mater Sci 33:1165. doi: https://doi.org/10.1023/A:1004365323620 CrossRefGoogle Scholar
  4. 4.
    Chrysostomou A, Hashemi S (1998) J Mater Sci 33:4491. doi: https://doi.org/10.1023/A:1004487814709 CrossRefGoogle Scholar
  5. 5.
    Nabi ZU, Hashemi S (1998) J Mater Sci 33:2985. doi: https://doi.org/10.1023/A:1004362915713 CrossRefGoogle Scholar
  6. 6.
    Hashemi S (2002) Plast Rubber Compos 31:1. doi: https://doi.org/10.1179/146580101125000484 CrossRefGoogle Scholar
  7. 7.
    Hashemi S, Lepessova Y (2007) J Mater Sci 42:2652. doi: https://doi.org/10.1007/s10853-006-1358-z CrossRefGoogle Scholar
  8. 8.
    Necar M, Irfan-ul-Haq Khan Z (2003) J Mater Process Technol 142:247. doi: https://doi.org/10.1016/S0924-0136(03)00567-3 CrossRefGoogle Scholar
  9. 9.
    Fu SY, Lauke B, Mader E, Yue CY, Hu X (2000) Composites Part A 31:1117. doi: https://doi.org/10.1016/S1359-835X(00)00068-3 CrossRefGoogle Scholar
  10. 10.
    Fisa B (1985) Polym Compos 6:232. doi: https://doi.org/10.1002/pc.750060408 CrossRefGoogle Scholar
  11. 11.
    Thomason JL (2002) Compos Sci Technol 62:1455. doi: https://doi.org/10.1016/S0266-3538(02)00097-0 CrossRefGoogle Scholar
  12. 12.
    Thomason JL (2001) Compos Sci Technol 61:2007. doi: https://doi.org/10.1016/S0266-3538(01)00062-8 CrossRefGoogle Scholar
  13. 13.
    Yilmazer U (1992) Compos Sci Technol 44:119. doi: https://doi.org/10.1016/0266-3538(92)90104-B CrossRefGoogle Scholar
  14. 14.
    Hashemi S, Elmes P, Sandford S (1997) Polym Eng Sci 37:45CrossRefGoogle Scholar
  15. 15.
  16. 16.
    Debondue E, Foumier J-E, Lacrampe MF, Krawczak (2004) J Polym Polym Compos 12:373Google Scholar
  17. 17.
    Sanschagrin B, Gauvin R, Fisa B, Vu-Khanh T (1990) J Reinf Plast Compos 8:194. doi: https://doi.org/10.1177/073168449000900209 CrossRefGoogle Scholar
  18. 18.
    Meddad A, Fisa B (1995) Polym Eng Sci 35:893CrossRefGoogle Scholar
  19. 19.
    Akay M, Barkley D (1993) Plast Rubber Compos 20:137Google Scholar
  20. 20.
    Nadkarni VM, Ayodhya SR (1993) Polym Eng Sci 33:358CrossRefGoogle Scholar
  21. 21.
  22. 22.
    Cox HL (1952) Br Appl Phys 3:72CrossRefGoogle Scholar
  23. 23.
    Einstein A (1906) Ann Phys 19:289. doi: https://doi.org/10.1002/andp.19063240204 CrossRefGoogle Scholar
  24. 24.
    Leidner J, Woodhams RT (1974) J Appl Polym Sci 18:1639. doi: https://doi.org/10.1002/app.1974.070180606 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.London Metropolitan Polymer CentreLondon Metropolitan UniversityLondonUK

Personalised recommendations