Journal of Materials Science

, Volume 43, Issue 23–24, pp 7307–7312 | Cite as

Formation of ultrafine-grained microstructure in HSLA steel profiles by linear flow splitting

  • T. BohnEmail author
  • E. Bruder
  • C. Müller
Ultrafine-Grained Materials


Linear flow splitting is a new cold forming process for the production of branched sheet metal structures in integral style. It induces extremely high deformation degrees without formation of cracks in the split sheets due to hydrostatic compressive stresses. Investigations on a HSLA steel (ZStE 500) show the formation and fragmentation of a dislocation cell structure in the severely deformed regions of the steel sheet. This results in ultrafine-grained microstructures and improved mechanical properties, similar to SPD processes as Equal Channel Angular Pressing (ECAP) or High Pressure Torsion (HPT). EBSD measurements reveal a gradient in grain size with an increase in direction perpendicular to the surface, whereas micro hardness decreases in the same direction. Based on these results, basic principles of linear flow splitting and its expected potential are discussed.


Flange HSLA Steel Equal Channel Angular Pressing Process Zone High Pressure Torsion 



The investigations presented in this article are supported by the German Research Foundation (DFG). The authors thank the DFG for funding the subproject C1 of the Collaborative Research Center 666 “Integral sheet metal design with higher order bifurcations—Development, Production, Evaluation”.


  1. 1.
    Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zehetbauer MJ, Zhu YT (2006) JOM 58:33. doi: CrossRefGoogle Scholar
  2. 2.
    Furukawa M, Horita Z, Nemoto M, Langdon TG (2001) J Mater Sci 36:2835. doi: CrossRefGoogle Scholar
  3. 3.
    Tsuji N, Saito Y, Utsunomiya Y, Tanigawa S (1999) Scripta Mater 40:795CrossRefGoogle Scholar
  4. 4.
    Zhilyaev AP, Nurislamova GV, Kim B-K, Baró MD, Szpunar JA, Langdon TG (2003) Acta Mater 51:753. doi: CrossRefGoogle Scholar
  5. 5.
    Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1997) Acta Mater 45:4733. doi: CrossRefGoogle Scholar
  6. 6.
    Hughes DA, Hansen N (1997) Acta Mater 45:3871. doi: CrossRefGoogle Scholar
  7. 7.
    Pragnell PB, Bowen JR, Gholinia A (2001) In: Dinesen AR, Eldrup M, Juul Jensen D, Linderoth S, Pederson TB, Pryds NH, Schrøder Pedersen A, Wert JA (eds) Proceedings of the 22nd Risø international symposium on materials science, Risø National Laboratory, Roskilde, Denmark, p 105Google Scholar
  8. 8.
    Zhu YT, Lowe TC, Langdon TG (2004) Scripta Mater 51:825. doi: CrossRefGoogle Scholar
  9. 9.
    Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103. doi: CrossRefGoogle Scholar
  10. 10.
    Groche P, Vucic D, Jöckel M (2007) J Mater Process Technol 183:249. doi: CrossRefGoogle Scholar
  11. 11.
    Groche P, Ringler J, Vucic D (2007) Key Eng Mater 344:251CrossRefGoogle Scholar
  12. 12.
    Müller C, Bohn T, Bruder E, Bruder T, Landersheim V, el Dsoki C, Groche P, Veleva D (2007) Mat-wiss u Werkstofftech 38:842. doi: CrossRefGoogle Scholar
  13. 13.
    Kim HS, Ryu WS, Janecek M, Baik SC, Estrin Y (2005) Adv Eng Mater 7:43. doi: CrossRefGoogle Scholar
  14. 14.
    Tsuji N, Ito Y, Saito Y, Minamino Y (2002) Scripta Mater 47:893. doi: CrossRefGoogle Scholar
  15. 15.
    Wang YM, Ma E (2004) Mater Sci Eng A 375–377:46CrossRefGoogle Scholar
  16. 16.
    Shin DH, Park K-T (2005) Mater Sci Eng A 410–411:299CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Division Physical Metallurgy, Materials ScienceTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations