Advertisement

Journal of Materials Science

, Volume 43, Issue 15, pp 5068–5075 | Cite as

Grain growth in porous two-dimensional nanocrystalline materials

  • Leonid Klinger
  • Eugen RabkinEmail author
  • Lasar S. Shvindlerman
  • Günter Gottstein
Interface Science

Abstract

Grain growth in two-dimensional polycrystals with mobile pores at the grain boundary triple junctions is considered. The kinetics of grain and pore growth are determined under the assumption that pore sintering and pore mobility are controlled by grain boundary and surface diffusion, respectively. It is shown that a polycrystal can achieve full density in the course of grain growth only when the initial pore size is below a certain critical value which depends on kinetic parameters, interfacial energies, and initial grain size. Larger pores grow without limits with the growing grains, and the corresponding grain growth exponent depends on kinetic parameters and lies between 2 and 4. It is shown that for a polycrystal with subcritical pores the average grain size increases linearly with time during the initial stages of growth, in agreement with recent experimental data on grain growth in thin Cu films and in bulk nanocrystalline Fe.

Keywords

Triple Junction Nanocrystalline Material Triple Line Residual Porosity Growth Exponent 

Notes

Acknowledgements

This work was supported by the Russell Berrie Nanotechnology Institute (Technion) and by the RWTH Aachen through the Umbrella Cooperation Program.

References

  1. 1.
    Gleiter H (1989) Prog Mater Sci 33:223. doi: https://doi.org/10.1016/0079-6425(89)90001-7 CrossRefGoogle Scholar
  2. 2.
    Chaudhari PJ (1972) Vac Sci Technol 9:520. doi: https://doi.org/10.1116/1.1316674 CrossRefGoogle Scholar
  3. 3.
    Upmanyu M, Srolovitz DJ, Gottstein G, Shvindlerman LS (1998) Interface Sci 6:289. doi: https://doi.org/10.1023/A:1008653704896 CrossRefGoogle Scholar
  4. 4.
    Shvindlerman LS, Gottstein G, Ivanov VA, Molodov DA, Kolesnikov D, Lojkowski W (2006) J Mater Sci 41:7725. doi: https://doi.org/10.1007/s10853-006-0563-0 CrossRefGoogle Scholar
  5. 5.
    Brook RJ (1976) In: Wang FFY (eds) Treatise on materials science and technology, vol 9. Academic, New York, pp 331–363Google Scholar
  6. 6.
    Yan MF, Cannon RM, Chowdhry U (1978) Am Ceram Bull 57:316Google Scholar
  7. 7.
    Gottstein G, Shvindlerman LS (1993) Acta metal mater 41:3267CrossRefGoogle Scholar
  8. 8.
    Gottstein G, Ma Y, Shvindlerman LS (2005) Acta mater 53:1535. doi: https://doi.org/10.1016/j.actamat.2004.12.006 CrossRefGoogle Scholar
  9. 9.
    Gottstein G, Shvindlerman LS (2006) Scripta mater 54:1065. doi: https://doi.org/10.1016/j.scriptamat.2005.11.057 CrossRefGoogle Scholar
  10. 10.
    Cahn JW (1962) Acta metal 10:789CrossRefGoogle Scholar
  11. 11.
    Gottstein G, Shvindlerman LS (1999) Grain boundary migration in metals. CRC Press, Boca RatonGoogle Scholar
  12. 12.
    Spears MA, Evans AG (1982) Acta metal 30:1281CrossRefGoogle Scholar
  13. 13.
    Riedel H, Svoboda J (1993) Acta metal mater 41:1929CrossRefGoogle Scholar
  14. 14.
    Humphreys FJ, Hatherly M (1996) Recrystallization and related annealing phenomena. Elsevier, OxfordGoogle Scholar
  15. 15.
    Mishin Y, Kaur I, Gust W (1995) Fundamentals of grain and interphase boundary diffusion. Wiley, ChichesterGoogle Scholar
  16. 16.
    Schönfelder B, Gottstein G, Shvindlerman LS (2005) Acta mater 53:1597. doi: https://doi.org/10.1016/j.actamat.2004.12.010 CrossRefGoogle Scholar
  17. 17.
    Sinclair CW, Hutchinson CR, Brechet Y (2007) Met Mater Trans A 38:821. doi: https://doi.org/10.1007/s11661-007-9106-9 CrossRefGoogle Scholar
  18. 18.
    Fradkov VE, Udler D (1994) Adv Phys 43:739. doi: https://doi.org/10.1080/00018739400101559 CrossRefGoogle Scholar
  19. 19.
    Cao P, Zhang B (2006) Int J Mod Phys B 20:3830. doi: https://doi.org/10.1142/S0217979206040441 CrossRefGoogle Scholar
  20. 20.
    Krill III CE, Helfen L, Michels D, Natter H, Fitch A, Masson O, Birringer R (2001) Phys Rev Lett 86:842. doi: https://doi.org/10.1103/PhysRevLett.86.842 CrossRefGoogle Scholar
  21. 21.
    Estrin Y, Gottstein G, Rabkin E, Shvindlerman LS (2000) Scripta mater 43:141. doi: https://doi.org/10.1016/S1359-6462(00)00383-3 CrossRefGoogle Scholar
  22. 22.
    Klinger L, Rabkin E, Shvindlerman LS, Gottstein G (2008) J Mater Sci, to be submittedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Leonid Klinger
    • 1
  • Eugen Rabkin
    • 1
    Email author
  • Lasar S. Shvindlerman
    • 2
    • 3
  • Günter Gottstein
    • 2
  1. 1.Department of Materials EngineeringTechnion-Israel Institute of TechnologyHaifaIsrael
  2. 2.Institute of Physical Metallurgy and Metal PhysicsRWTH Aachen UniversityAachenGermany
  3. 3.Institute of Solid State PhysicsRussian Academy of SciencesChernogolovkaRussia

Personalised recommendations