Journal of Materials Science

, Volume 43, Issue 23–24, pp 7280–7285 | Cite as

The effect of cryogenic deformation on the limiting grain size in an SMG Al-alloy

  • P. B. PrangnellEmail author
  • Y. Huang
Ultrafine-Grained Materials


The minimum grain size obtainable in an Al–0.1%Mg submicron grained (SMG) alloy, subjected to cryogenic plane strain deformation, and its subsequent stability during room temperature deformation have been investigated. A decreasing steady state grain size was obtained with reducing deformation temperature. However, a true nanocrystalline grain structure was not obtained even at 77 K with the high angle boundary spacing only approaching the nanoscale in the sample normal direction. The cryogenically deformed material was unstable on subsequent deformation at room temperature and underwent rapid dynamic grain growth. Dynamic grain coarsening is shown to limit the minimum grain size achievable in an SPD process, even under cryogenic conditions.


Severe Plastic Deformation Boundary Migration High Angle Boundary Equal Channel Angular Extrusion Plane Strain Compression 



The authors would like to acknowledge F. J. Humphreys for helpful discussions and the financial support from the Manchester EPSRC Light Alloys, Portfolio Partnership (EP/D029201/1).


  1. 1.
    Prangnell PB, Huang Y, Berta M, Apps PJ (2007) Mater Sci Forum 550:159CrossRefGoogle Scholar
  2. 2.
    Hebesberger T, Stüwe HP, Vorhauer A, Wetscher F, Pippan R (2005) Acta Mater 53:393. doi: CrossRefGoogle Scholar
  3. 3.
    Jazaeri H, Humphreys FJ (2004) Acta Mater 52:3239. doi: CrossRefGoogle Scholar
  4. 4.
    Jazaeri H, Humphreys FJ, Bate SP (2006) Mater Sci Forum 519–521:153CrossRefGoogle Scholar
  5. 5.
    Duly D, Baxter GJ, Shercliff HR, Whiteman JA, Sellars CM, Ashby MF (1996) Acta Mater 44:2947. doi: CrossRefGoogle Scholar
  6. 6.
    Wang YM, Chen YM, Zhou F, Ma E (2002) Nature 419:912. doi: CrossRefGoogle Scholar
  7. 7.
    Wang YM, Ma E (2004) Acta Mater 521:1699. doi: CrossRefGoogle Scholar
  8. 8.
    Hayes RW, Rodriguez R, Lavernia EJ (2001) Acta Mater 49:4055. doi: CrossRefGoogle Scholar
  9. 9.
    Jin M, Minor AM, Stach EA, Morris JW Jr (2004) Acta Mater 52:5381. doi: CrossRefGoogle Scholar
  10. 10.
    Gianola DS, Van Petegem S, Legros M, Brandstetter S, Van Swygenhoven H, Hemker KJ (2006) Acta Mater 54:2253. doi: CrossRefGoogle Scholar
  11. 11.
    Fan GJ, Fu LF, Choo H, Liaw PK, Browning ND (2006) Acta Mater 54:4781. doi: CrossRefGoogle Scholar
  12. 12.
    Brandstetter S, Zhang Kai, Escuadro A, Weertman JR, Van Swygenhoven H (2008) Scripta Mater 58:61. doi: CrossRefGoogle Scholar
  13. 13.
    Prangnell PB, Hayes JS, Bowen JR, Apps PJ, Bate PS (2004) Acta Mater 52:3193. doi: CrossRefGoogle Scholar
  14. 14.
    Hayes JS, Keyte R, Prangnell PB (2000) Mater Sci Tech 16:1259CrossRefGoogle Scholar
  15. 15.
    Rauch EF (1992) Solid State Phenom 23–24:317CrossRefGoogle Scholar
  16. 16.
    Balarin M (1975) Phys State Solid A 31:111. doi: CrossRefGoogle Scholar
  17. 17.
    Winning M, Gottstein G, Shvindlerman LS (2001) Acta Mater 49:211. doi: CrossRefGoogle Scholar
  18. 18.
    Zehetbauer MJ, Steinter G, Schafler E, Korznikov A, Korznikova E (2006) Mater Sci Forum 503–504:57CrossRefGoogle Scholar
  19. 19.
    Fu H-H, Benson DJ, Meyers MA (2001) Acta Mater 49:2567. doi: CrossRefGoogle Scholar
  20. 20.
    Humphreys FJ, Hatherly M (2004) Recrystallization and related annealing phenomenon. Pergamon, Oxford, p 146Google Scholar
  21. 21.
    Suzuki A, Mishin Y (2005) Mater Sci Forum 502:157CrossRefGoogle Scholar
  22. 22.
    Li JCM (2006) Phys Rev Lett 96:215506. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Manchester Materials Science CentreThe University of ManchesterManchesterUK

Personalised recommendations