Journal of Materials Science

, Volume 43, Issue 13, pp 4625–4630 | Cite as

Preparation of pH-responsive silver nanoparticles by RAFT polymerization

  • Youyi SunEmail author
  • Yaqing Liu
  • Guizhe Zhao
  • Xing Zhou
  • Jiangang Gao
  • Qijin Zhang


Silver nanoparticles were prepared by chemical reduction of AgNO3 in the presence of the PDMAEMA-b-PPA, which was synthesized by the reversible addition-fragmentation transfer technique. The formation of the silver nanoparticles was determined by the transmission electron microscopy (TEM) images and UV–Vis absorption spectra. The average size of the silver nanoparticles was shown to 11.4 nm. Particularly, the pH-responsive property of the silver nanoparticle was further observed. It was characterized by the zate potential, the UV–Vis spectra, and TEM images. The results show that the pH-responsive property is attributed to the aggregate of the silver nanoparticles as a function of pH. The characteristic is expected to apply in the nanoscale optical biosensor and biomaterials.


Silver Nanoparticles Lower Critical Solution Temperature DMAEMA Raft Agent Surface Plasmon Resonance Absorption 



This work was supported by the Natural Science Foundation of Shangxi (Nos. 033004 and 200671037), Youthful Science Foundation of Shanxi province (Nos. P20072185 and P20072194), and the Youthful Science Foundation of North university. The authors are grateful for the financial support and express their thanks to Zhang Zhiyi for helpful discussions and Gao jinfeng for FT-IR measurements.


  1. 1.
    Noritsugu K, Makoto T, Takeshi F, Kenji A, Yoshiro Y (2001) Langmuir 17:578. doi: CrossRefGoogle Scholar
  2. 2.
    Yuzhen S, Jacek S, Tzu-Chau L, Przemyslaw M, Paras NP (2002) J Phys Chem B 106:4040. doi: CrossRefGoogle Scholar
  3. 3.
    Pelton R (2000) Adv Colloid Interface Sci 85:1. doi: CrossRefGoogle Scholar
  4. 4.
    Jeong B, Bae YH, Lee DS, Kim SW (1997) Nature 388:860. doi: CrossRefGoogle Scholar
  5. 5.
    Bergbreiter DE, Case BL, Liu YS, Caraway JW (1998) Macromolecules 31:6053. doi: CrossRefGoogle Scholar
  6. 6.
    Jun S, Jie C, Markus N, Tapani V, Hua J, Jouko P, Esko K, Heikki T (2006) Langmuir 22:794. doi: CrossRefGoogle Scholar
  7. 7.
    Zhu MQ, Wang LQ, Gregory JE, Alexander DQ (2004) J Am Chem Soc 126:2656. doi: CrossRefGoogle Scholar
  8. 8.
  9. 9.
    Youngjin K, Robert CJ, Joseph TH (2001) Nano Lett 1:165. doi: CrossRefGoogle Scholar
  10. 10.
    Sean B, Dyer N, Anthony G (2003) Biomacromolecules 4:1224. doi: CrossRefGoogle Scholar
  11. 11.
    Bu¨tu¨n V, Lowe AB, Billingham NC, Armes SP (1999) J Am Chem Soc 121:4288. doi: CrossRefGoogle Scholar
  12. 12.
    Jean-François G, Serge C, Myriam G, Boris M, Manfred S, Jérôme R (2000) Macromolecules 33:6378. doi: CrossRefGoogle Scholar
  13. 13.
    Jean-François G, Sayed A, Jérôme R (2001) Macromolecules 34:7435. doi: CrossRefGoogle Scholar
  14. 14.
    Evgenii BB, Dmitry AP, Marina VB (2004) Langmuir 20:10868. doi: CrossRefGoogle Scholar
  15. 15.
    Jacob WC, Michael PS, James MT (2004) J Am Chem Soc 126:13172. doi: CrossRefGoogle Scholar
  16. 16.
    Peng QL, Doreen MYE, Kang T, Neoh KG (2006) Macromolecules 39:5577. doi: CrossRefGoogle Scholar
  17. 17.
    Zhao Q, Peihong N (2005) Polymer 46:3141. doi: CrossRefGoogle Scholar
  18. 18.
    Costas SP, Leo RS, Steven PA, Norman CB (1999) Langmuir 15:1613. doi: CrossRefGoogle Scholar
  19. 19.
    Mayadunne RTA, Rizzardo E, Chiefari J, Krstina J, Moad G (2000) Macromolecules 33:243. doi: CrossRefGoogle Scholar
  20. 20.
    Callegari A, Tonti D, Chergui M (2003) Nano Lett 3:1565. doi: CrossRefGoogle Scholar
  21. 21.
    Cliffel DE, Zamborini FP, Gross SM, Murray RW (2000) Langmuir 16:9699. doi: CrossRefGoogle Scholar
  22. 22.
    Sun YY, Wang D, Gao JG, Zheng Z, Zhang QJ (2007) J Appl Polym Sci 103:701Google Scholar
  23. 23.
    Dongshan Z, Liang L, Gi X (2002) Langmuir 18:4559. doi: CrossRefGoogle Scholar
  24. 24.
    Zhou JL, Yang JJ, Sun YY, Zhang DG, Zhang QJ (2007) Thin Solid Films 515:7242. doi: CrossRefGoogle Scholar
  25. 25.
    Gohy JFo, Creutz S, Garcia M, Mahltig B (2000) Macromolecules 33:6378. doi: CrossRefGoogle Scholar
  26. 26.
    Sooklal K, Hanus LH, Ploehn H, Murphy JC (1998) J Adv Mater 10:1083. doi:<1083::AID-ADMA1083>3.0.CO;2-B CrossRefGoogle Scholar
  27. 27.
    Storhoff JJ, Lazarides AA, Mucic RC, Mirkin CA, Letsinger RL, Schatz GC (2000) J Am Chem Soc 122:4640. doi: CrossRefGoogle Scholar
  28. 28.
    Zheng J, Stevenson MS, Hikida RS, Van Patten PG (2002) J Phys Chem B 106:1252. doi: CrossRefGoogle Scholar
  29. 29.
    Lazarides AA, Schatz GC (2000) J Phys Chem B 104:460. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Youyi Sun
    • 1
    Email author
  • Yaqing Liu
    • 1
  • Guizhe Zhao
    • 1
  • Xing Zhou
    • 1
  • Jiangang Gao
    • 2
  • Qijin Zhang
    • 3
  1. 1.Research Center for Engineering Technology of Polymeric Composites of ShangxiNorth University of ChinaTaiyuanPeople’s Republic of China
  2. 2.Department of BiochemistryAnhui University of Technology and ScienceWuhuChina
  3. 3.Department of Polymer Science and EngineeringUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations