Advertisement

Journal of Materials Science

, Volume 43, Issue 13, pp 4658–4665 | Cite as

High energy impact techniques application for surface grain refinement in AZ91D magnesium alloy

  • Li-feng Hou
  • Ying-hui WeiEmail author
  • Bao-sheng Liu
  • Bing-she Xu
Article

Abstract

A nanostructured surface layer was fabricated on magnesium alloy AZ91D by using the high-energy impact technique (HEIT). With the help of transmission electron microscope (TEM) and high-resolution transmission electron microscope (HRTEM), the microstructure features of the surface layer were systematically observed and characterized in different stages of microstructure evolution. The result revealed the mechanism of grain refinement and strain accommodation. The process of grain refinement, accompanied by an increase in strain in the surface layer, resulted from several processes. The onset of \( \{ 01\ifmmode\expandafter\bar\else\expandafter\=\fi{1}2\} \) deformation twinning and the intersection with \( \{ 10\ifmmode\expandafter\bar\else\expandafter\=\fi{1}1\} \) twins system are one of them. The operation of \( {\left\langle {11\ifmmode\expandafter\bar\else\expandafter\=\fi{2}0} \right\rangle }{\left( {0001} \right)} \) basal slip and \( {\left\langle {11\ifmmode\expandafter\bar\else\expandafter\=\fi{2}3} \right\rangle }(1\ifmmode\expandafter\bar\else\expandafter\=\fi{1}02)/(0\ifmmode\expandafter\bar\else\expandafter\=\fi{1}1\ifmmode\expandafter\bar\else\expandafter\=\fi{2}) \) pyramidal slip led to the formation of dislocation cells and low-angle dislocation boundaries. The successive subdivision of grains to a finer scale resulted in the formation of highly disoriented nanocrystalline grains. The mechanism of grain refinement was interpreted in terms of the structural subdivision of grains together with dynamic recrystallization. The minimum size of such refined grains was about 40 nm.

Keywords

High Resolution Transmission Electron Microscope Magnesium Alloy High Resolution Transmission Electron Microscope Dislocation Cell Deformation Twinning 

Notes

Acknowledgements

This research was supported by National Natural Science Foundation of China (50471070, 50644041), Shanxi Province Youth Science and Technology Foundation (20041023), and Shanxi Province Key Laboratory Opening Foundation.

References

  1. 1.
    Korznikov AV, Ivanisenko YV, Laptionok DV, Safarov IM, Pilyugin VP, Valiev RZ (1994) Nanostruct Mater 4:159. doi: https://doi.org/10.1016/0965-9773(94)90075-2 CrossRefGoogle Scholar
  2. 2.
    Tao NR, Sui ML, Lu J, Lu K (1999) Nanostruct Mater 11:433. doi: https://doi.org/10.1016/S0965-9773(99)00324-4 CrossRefGoogle Scholar
  3. 3.
    Shin DH, Kim BC, Kim YS, Park KT (2000) Acta Mater 48:2247. doi: https://doi.org/10.1016/S1359-6454(00)00028-8 CrossRefGoogle Scholar
  4. 4.
    Yamashita A, Horita Z, Langdon TG (2001) Mater Sci Eng A 300:142. doi: https://doi.org/10.1016/S0921-5093(00)01660-9 CrossRefGoogle Scholar
  5. 5.
    Rivas JM, Quinones SA, Murr LE (1995) Scripta Metall Mater 33:101. doi: https://doi.org/10.1016/0956-716X(95)00105-5 CrossRefGoogle Scholar
  6. 6.
    Murr LE, Niou C-S, Garcia EP, E.Ferreyra ET, Rivas JM, Sanchez JC (1997) Mater Sci Eng A 222:118. doi: https://doi.org/10.1016/S0921-5093(96)10518-9 CrossRefGoogle Scholar
  7. 7.
    Murr LE, Quinones SA, Ferreyra E, Ayala A, Valerio OL, Hörz F, Benhard RP (1998) Mater Sci Eng A 256:166. doi: https://doi.org/10.1016/S0921-5093(98)00796-5 CrossRefGoogle Scholar
  8. 8.
    Francesconi A, Pavarin D, Giacomuzzo C, Angrilli F (2006) Int J Impact Eng 33:264. doi: https://doi.org/10.1016/j.ijimpeng.2006.09.056 CrossRefGoogle Scholar
  9. 9.
    Murr LE, Shih HK, Niou C-S (1994) Mater Charact 33:65. doi: https://doi.org/10.1016/1044-5803(94)90060-4 CrossRefGoogle Scholar
  10. 10.
    Tao NR, Wang ZB, Tong WP, Sui ML, Lu J, Lu K (2002) Acta Mater 50:4603. doi: https://doi.org/10.1016/S1359-6454(02)00310-5 CrossRefGoogle Scholar
  11. 11.
    Liu G, Wang SC, Lou XF, Lu J, Lu K (2001) Scripta Mater 44:1791CrossRefGoogle Scholar
  12. 12.
    Liu G, Lu J, Lu K (2000) Mater Sci Eng A 286:91. doi: https://doi.org/10.1016/S0921-5093(00)00686-9 CrossRefGoogle Scholar
  13. 13.
    Zhang HW, Liu G, Hei ZK, Luu J, Lu K (2003) Acta Metall Sin 39:342Google Scholar
  14. 14.
    Zhu KY, Vassel A, Brisset F, Lu K, Lu J (2004) Acta Mater 52:4101. doi: https://doi.org/10.1016/j.actamat.2004.05.023 CrossRefGoogle Scholar
  15. 15.
    Lanqing H, Ke W, Gang L, Bingshe X (2005) Trans Nonferrous Met Soc Chin 15:615Google Scholar
  16. 16.
    Wu X, Tao N, Hong Y, Xu B, Lu J, Lu K (2002) Acta Mater 50:2075. doi: https://doi.org/10.1016/S1359-6454(02)00051-4 CrossRefGoogle Scholar
  17. 17.
    Wu X, Tao NR, Hong Y, Liu G, Xu B, Lu J, Lu K (2005) Acta Mater 53:681. doi: https://doi.org/10.1016/j.actamat.2004.10.021 CrossRefGoogle Scholar
  18. 18.
    Caiyun S, Jijie X, Xiaolei W, Youshi H, Gang L, Jian L, Lu K (2004) Trans Mater Heat Treat 25:1242Google Scholar
  19. 19.
    Koike J, Ohyama R (2005) Acta Mater 53:1963CrossRefGoogle Scholar
  20. 20.
    Yoshida Y, Cisar L, Kamado S et al (2003) Mater Sci Eng A 419–422:533Google Scholar
  21. 21.
    Kim WJ, Hong SI, Kim YS, Min SH, Jeong HT, Lee JD (2003) Acta Mater 51:3293. doi: https://doi.org/10.1016/S1359-6454(03)00161-7 CrossRefGoogle Scholar
  22. 22.
    Kim WJ, Kim JK, Chao WY, Hong SI, Lee JD (2000) Acta Mater 48:2625. doi: https://doi.org/10.1016/S1359-6454(00)00061-6 CrossRefGoogle Scholar
  23. 23.
    Yoshida Y, Cisar L, Kamado S (2003) Mater Trans 44:468. doi: https://doi.org/10.2320/matertrans.44.468 CrossRefGoogle Scholar
  24. 24.
    Watanabe H, Mukai T, Kamado S, Kojima Y, Higashi K (2003) Mater Trans 44:463. doi: https://doi.org/10.2320/matertrans.44.463 CrossRefGoogle Scholar
  25. 25.
    Matsubara K, Miyahara Y, Horita Z, Langdon TG (2003) Acta Mater 51:3037. doi: https://doi.org/10.1016/S1359-6454(03)00118-6 CrossRefGoogle Scholar
  26. 26.
    Zhenhua C, Chunhua Y, Changqing H, Weijun X, Hongge Y (2006) Mater Rev 20:107Google Scholar
  27. 27.
    Von Mises R (1928) Angew Z Math Mech 8:161Google Scholar
  28. 28.
    Bohlen J, Chmelík F, Dobroň P, Letzig D, Lukáč P, Kainer KU (2004) J Alloys Compd 378:214. doi: https://doi.org/10.1016/j.jallcom.2003.10.101 CrossRefGoogle Scholar
  29. 29.
    Staroselsky A, Anand L (2003) Int J Plasticity 19:1843. doi: https://doi.org/10.1016/S0749-6419(03)00039-1 CrossRefGoogle Scholar
  30. 30.
    Jäger A, Lukáč P, Gärtnerová V, Bohlen J, Kainer KU (2004) J Alloys Compd 378:184. doi: https://doi.org/10.1016/j.jallcom.2003.11.173 CrossRefGoogle Scholar
  31. 31.
    Yoo MH (1981) Metall Mater Trans A 12A:409CrossRefGoogle Scholar
  32. 32.
    Courteny TH (1990) Mechanical behavior of materials. McGraw-Hill, New YorkGoogle Scholar
  33. 33.
    Yoo MH, Agnew SR, Morris JR, Ho KM (2001) Mater Sci Eng A 319–321:87CrossRefGoogle Scholar
  34. 34.
    Puschl W (2002) Prog Mater Sci 47:415. doi: https://doi.org/10.1016/S0079-6425(01)00003-2 CrossRefGoogle Scholar
  35. 35.
    Kaibyshev R, Sitdikov O (1994) Z Met Kd 85:738Google Scholar
  36. 36.
    Zhenhua C, Weijun X, Hongge Y, Dingfa F, Jihua C (2004) Chem Ind Eng Progress 23:127Google Scholar
  37. 37.
    Derby B (1991) Acta Metall Mater 39:955. doi: https://doi.org/10.1016/0956-7151(91)90295-C CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Li-feng Hou
    • 1
    • 2
  • Ying-hui Wei
    • 1
    • 2
    Email author
  • Bao-sheng Liu
    • 1
  • Bing-she Xu
    • 1
    • 2
  1. 1.College of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuanPeople’s Republic of China
  2. 2.Key Laboratory of Interface Science and Engineering in Advanced Materials of Taiyuan University of TechnologyMinistry of EducationTaiyuanPeople’s Republic of China

Personalised recommendations