Advertisement

Journal of Materials Science

, Volume 43, Issue 13, pp 4618–4624 | Cite as

Fabrication of short carbon fiber preforms coated with pyrocarbon/SiC for liquid metal infiltration

  • Haibo Ouyang
  • Hejun Li
  • Lehua Qi
  • Zhengjia Li
  • Ting Fang
  • Jianfeng Wei
Article

Abstract

A novel method of fabricating short carbon fiber preforms was proposed for liquid metal infiltration. The preforms were shaped by wet forming and strengthened by pyrocarbon (PyC). SiC layers were prepared on carbon fibers by the reaction of SiO and PyC at 1600 °C. X-ray Diffraction, Scanning Electron Microscopy, and Energy Dispersive X-ray Spectroscopy were applied in the characterization of the preforms. Gas pressure infiltration was done to demonstrate the feasibility of the preforms for the liquid metal infiltration. The microstructure analysis indicates that carbon fibers are uniformly distributed in the preforms, and fibers are coated with an inner layer of PyC and an outer layer of SiC. The infiltration experiment proves that the prepared preforms are feasible for liquid metal infiltration under low infiltration pressure and temperature.

Keywords

Carbon Fiber Carbothermal Reduction Short Carbon Fiber Carbon Template Infiltration Temperature 

Notes

Acknowledgements

This work has been supported by the National Natural Science Foundation of China under Grant No. 50575185, the Foundation of Aeronautic Science of China under Grant No. 05G53048, and the Natural Science Foundation of Shaanxi province under Grant No. 2005E23.

References

  1. 1.
    Rams J, Urena A, Escalera MD, Sánchez M (2007) Composites A 38:566. doi: https://doi.org/10.1016/j.compositesa.2006.02.010 CrossRefGoogle Scholar
  2. 2.
    Dieringa H, Hort N, Kainer KU (2004) ATM 6:136Google Scholar
  3. 3.
    Carreno-Morelli E, Cutard T, Schaller R, Bonjour C (1998) Mater Sci Eng A 251:48. doi: https://doi.org/10.1016/S0921-5093(98)00649-2 CrossRefGoogle Scholar
  4. 4.
    Mizumoto M, Ohgai T, Kagawa A (2005) Mater Sci Eng A 413–414:521. doi: https://doi.org/10.1016/j.msea.2005.07.065 CrossRefGoogle Scholar
  5. 5.
    Abd-Elwahed MA (1999) J Mater Process Technol 86:152CrossRefGoogle Scholar
  6. 6.
    Ju CP, Chen KI, Chern-Lin JH (1994) J Mater Sci 29:5127. doi: https://doi.org/10.1007/BF01151107 CrossRefGoogle Scholar
  7. 7.
    Silvain JF, Proult A, Lahaye M, Douin J (2003) Composites A 34:1143. doi: https://doi.org/10.1016/j.compositesa.2003.08.006 CrossRefGoogle Scholar
  8. 8.
    Naplocha K, Janus A, Kaczmar JW, Samsonowicz Z (2000) J Mater Process Technol 106:119. doi: https://doi.org/10.1016/S0924-0136(00)00601-4 CrossRefGoogle Scholar
  9. 9.
    Chiou JM, Chung DDL (1993) J Mater Sci 28:1435. doi: https://doi.org/10.1007/BF00363335 CrossRefGoogle Scholar
  10. 10.
    Chiou JM, W BY, Chen CM (1993) J Mater Eng Perform 2:383. doi: https://doi.org/10.1007/BF02648826 CrossRefGoogle Scholar
  11. 11.
    Chiou JM, Chung DDL (1993) J Mater Sci 28:1447. doi: https://doi.org/10.1007/BF00363336 CrossRefGoogle Scholar
  12. 12.
    Landry K, Kalogeropoulou S, Eustathopoulos N (1998) Mater Sci Eng A 254:99. doi: https://doi.org/10.1016/S0921-5093(98)00759-X CrossRefGoogle Scholar
  13. 13.
    Steffens HD, Reznik B, Kruzhanov V (1997) J Mater Sci 32:5413. doi: https://doi.org/10.1023/A:1018687432512 CrossRefGoogle Scholar
  14. 14.
    Lancin M, Marhic C (2000) J Eur Ceram Soc 20:1493. doi: https://doi.org/10.1016/S0955-2219(00)00021-2 CrossRefGoogle Scholar
  15. 15.
    Wang YC, Zhou BL (1996) Composites A 27:1139. doi: https://doi.org/10.1016/1359-835X(96)00072-3 CrossRefGoogle Scholar
  16. 16.
    Wang JW, Hong T, Li GY, Li PX (1997) Composites A 28:943. doi: https://doi.org/10.1016/S1359-835X(97)00068-7 CrossRefGoogle Scholar
  17. 17.
    Hackl G, Gerhard H, Popovska N (2006) Thin Solid Films 513:217. doi: https://doi.org/10.1016/j.tsf.2006.02.001 CrossRefGoogle Scholar
  18. 18.
    Kusakabe K, Sea BK, Hayashi JI, Maeda H, Morooka S (1996) Carbon 34:179. doi: https://doi.org/10.1016/0008-6223(96)00166-2 CrossRefGoogle Scholar
  19. 19.
  20. 20.
    Kowbel W, Withers JC (1995) Carbon 33:415. doi: https://doi.org/10.1016/0008-6223(94)00166-W CrossRefGoogle Scholar
  21. 21.
    Lee YJ (2004) Diam Relat Mater 13:383. doi: https://doi.org/10.1016/j.diamond.2003.11.062 CrossRefGoogle Scholar
  22. 22.
    Yang WY, Miao HZ, Xie ZP (2004) Chem Phys Lett 383:441. doi: https://doi.org/10.1016/j.cplett.2003.11.031 CrossRefGoogle Scholar
  23. 23.
    Wu YJ, Wu JS, Qin W (2004) Mater Lett 58:2295. doi: https://doi.org/10.1016/S0167-577X(04)00123-5 CrossRefGoogle Scholar
  24. 24.
    Gao YH, Bando Y, Kurasima K, Sato T (2002) J Mater Sci 37:2023. doi: https://doi.org/10.1023/A:1015207416903 CrossRefGoogle Scholar
  25. 25.
    Tang CC, Fan SS, Dang HY, Zhao JH (2000) J Cryst Growth 210:595. doi: https://doi.org/10.1016/S0022-0248(99)00737-X CrossRefGoogle Scholar
  26. 26.
    Vogli E, Mukerji J, Hoffman C, Kladny R (2001) J Am Ceram Soc 84(6):1236CrossRefGoogle Scholar
  27. 27.
    Demir A, Altinkok N (2004) Compos Sci Technol 64:2067. doi: https://doi.org/10.1016/j.compscitech.2004.02.015 CrossRefGoogle Scholar
  28. 28.
    Diwanji AP, Hall IW (1992) J Mater Sci 27:2093. doi: https://doi.org/10.1007/BF01117922 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Haibo Ouyang
    • 1
  • Hejun Li
    • 1
  • Lehua Qi
    • 1
  • Zhengjia Li
    • 1
  • Ting Fang
    • 1
  • Jianfeng Wei
    • 1
  1. 1.C/C Composites Research Center, Key Laboratory of Ultrahigh Temperature CompositesNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China

Personalised recommendations