Advertisement

Journal of Materials Science

, Volume 43, Issue 13, pp 4443–4449 | Cite as

Effect of the processing method on the mechanical properties and morphology of compatibilized PA6/LDPE blends

  • Pankaj AgrawalEmail author
  • Edcleide M. Araújo
  • Tomás J. A. Mélo
Article

Abstract

In this work, the effect of the processing method on the mechanical properties and morphology of compatibilized PA6/LDPE blends was investigated. The blends were prepared by two processing methods: Injection and Extrusion followed by Injection. The compatibilizers used were polyethylene grafted with acrylic acid (PEgAA) and polyethylene grafted with maleic anhydride (PEgMA). The results showed that in both processing methods the impact strength and elongation at break of the compatibilized blends were greater than those of the uncompatibilized ones. For the blends prepared by injection, the impact strength of PA6/PEgMA/LDPE blend was greater than that of PA6/PEgAA/LDPE blend. For the blends prepared by extrusion followed by injection, the impact strength of the PA6/PEgAA/LDPE blend was greater than that of PA6/PEgMA/LDPE blend. SEM analysis showed that the morphology of the PA6/PEgAA/LDPE blend prepared by extrusion followed by injection was more stable than that of the same blend prepared only by injection.

Keywords

Torque Acrylic Acid Impact Strength High Density Polyethylene LDPE 

Notes

Acknowledgements

The authors thank Rhodia for supplying PA6, Crompton for supplying PEgAA and PEgMA, Braskem for supplying LDPE, and CNPq for the financial support.

References

  1. 1.
    Lahor A, Nithitanakul M, Grady BP (2004) Eur Polym J 40:2409. doi: https://doi.org/10.1016/j.eurpolymj.2004.07.004 CrossRefGoogle Scholar
  2. 2.
    Deanin RD, Manion MA (1999) In: Shonaike GO, Simon GP (eds) Polymer blends and alloys. Marcel Decker Inc., New YorkGoogle Scholar
  3. 3.
    Zhaohui L, Zhang X, Tasaka S, Inagaki N (2001) Mater Lett 48:81. doi: https://doi.org/10.1016/S0167-577X(00)00283-4 CrossRefGoogle Scholar
  4. 4.
    Darie RN, Brebu M, Vasile C, Kozlowski M (2003) Polym Degrad Stab 80:551. doi: https://doi.org/10.1016/S0141-3910(03)00052-1 CrossRefGoogle Scholar
  5. 5.
    Halldén A, Deriss MJ, Wesslén B (2001) Polymer 42:8743. doi: https://doi.org/10.1016/S0032-3861(01)00452-9 CrossRefGoogle Scholar
  6. 6.
    Araújo EM, Hage Jr E, Carvalho AJF (2005) J Mater Sci 40:4239. doi: https://doi.org/10.1007/s10853-005-2842-6 CrossRefGoogle Scholar
  7. 7.
    Harrats C, Fayt R, Jérôme R (2002) Polymer 43:5347. doi: https://doi.org/10.1016/S0032-3861(02)00363-4 CrossRefGoogle Scholar
  8. 8.
    Fellahi S, Favis BD, Fisa B (1996) Polymer 37:2615. doi: https://doi.org/10.1016/0032-3861(96)87620-8 CrossRefGoogle Scholar
  9. 9.
    Dagli SS, Xanthos M, Biesenberger JA (1994) Polym Eng Sci 34:1720. doi: https://doi.org/10.1002/pen.760342303 CrossRefGoogle Scholar
  10. 10.
    Mélo TJA, Canevarolo SV (2005) Polym Eng Sci 45:11. doi: https://doi.org/10.1002/pen.20224 CrossRefGoogle Scholar
  11. 11.
    Piglowski J, Gancarz I, Wlazlak M, Kammer HW (2000) Polymer 41:6813. doi: https://doi.org/10.1016/S0032-3861(00)00034-3 CrossRefGoogle Scholar
  12. 12.
    Sacchi A, Di Landro L, Pegoraro M, Severine F (2004) Eur Polym J 40:1705. doi: https://doi.org/10.1016/j.eurpolymj.2004.03.025 CrossRefGoogle Scholar
  13. 13.
    La Mantia FP, Mongiovi C (1999) Polym Degrad Stab 66:337. doi: https://doi.org/10.1016/S0141-3910(99)00083-X CrossRefGoogle Scholar
  14. 14.
    Tedesco A, Barbosa RV, Nachtigall SMB, Mauler RS (2002) Polym Test 21:11. doi: https://doi.org/10.1016/S0142-9418(01)00038-1 CrossRefGoogle Scholar
  15. 15.
    Agrawal P, Oliveira SI, Araújo EM, Mélo TJA (2007) J Mater Sci 42:5007. doi: https://doi.org/10.1007/s10853-006-0514-9 CrossRefGoogle Scholar
  16. 16.
    Valenza A, Geuskens G, Spadaro G (1997) Eur Polym J 33:957. doi: https://doi.org/10.1016/S0014-3057(96)00174-7 CrossRefGoogle Scholar
  17. 17.
    Scaffaro R, La Mantia FP, Canfora L, Polacco G, Filippi S, Magagnini P (2003) Polymer 44:6951. doi: https://doi.org/10.1016/j.polymer.2003.06.001 CrossRefGoogle Scholar
  18. 18.
    Jiang C, Filippi S, Magagnini P (2003) Polymer 44:2411. doi: https://doi.org/10.1016/S0032-3861(03)00133-2 CrossRefGoogle Scholar
  19. 19.
    Yordanov Chr, Minkova L (2005) Eur Polym J 41:527. doi: https://doi.org/10.1016/j.eurpolymj.2004.10.034 CrossRefGoogle Scholar
  20. 20.
    Chiono V, Filippi S, Yordanov H, Minkova L, Magagnini P (2003) Polymer 44:2423. doi: https://doi.org/10.1016/S0032-3861(03)00134-4 CrossRefGoogle Scholar
  21. 21.
    Minkova L, Yordanov Hr, Fillipi S (2002) Polymer 43:6195. doi: https://doi.org/10.1016/S0032-3861(02)00532-3 CrossRefGoogle Scholar
  22. 22.
    Filippi S, Chiono V, Polacco G, Paci M, Minkova L, Magagnini P (2002) Macromol Chem Phys 203:1512. doi: https://doi.org/10.1002/1521-3935(200207)203:10/11<1512::AID-MACP1512>3.0.CO;2-G CrossRefGoogle Scholar
  23. 23.
    Meier-Haack J, Vako M, Lunkwitz K, Bleha M (2004) Desalination 163:215. doi: https://doi.org/10.1016/S0011-9164(04)90192-0 CrossRefGoogle Scholar
  24. 24.
    Roeder J, Oliveira RVB, Gonçalves MC, Soldi V, Pires ATN (2002) Polym Test 21:815. doi: https://doi.org/10.1016/S0142-9418(02)00016-8 CrossRefGoogle Scholar
  25. 25.
    Bassani A, Jr EH, Persan LA, Machado AV, Covas JA (2005) Polímeros 15:176CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Pankaj Agrawal
    • 1
  • Edcleide M. Araújo
    • 1
  • Tomás J. A. Mélo
    • 1
  1. 1.Department of Materials EngineeringFederal University of Campina GrandeCampina GrandeBrazil

Personalised recommendations