Journal of Materials Science

, Volume 43, Issue 17, pp 5998–6004 | Cite as

Atomic force microscopy tip torsion contribution to the measurement of nanomechanical properties

  • C. M. Almeida
  • R. PrioliEmail author


The nanomechanical properties of polymethyl methacrylate and indium phosphide were measured with an atomic force microscope and a nanoindentation system. The elastic moduli measured with the atomic force microscope are in good agreement with the values obtained with the nanoindentation system. The hardness is shown to be affected by the tip radius used in our experiments. The cantilever vertical and lateral movements were independently analyzed during nanoindentation, and the tip torsion can be attributed to a change from elastic to plastic deformation regimes of materials during force microscopy nanoindentation. An analysis of the lateral movement of the laser beam associated with the cantilever torsion was used to determine the material yield stress.


Atomic Force Microscope PMMA Indium Phosphide Atomic Force Microscope Cantilever Nanomechanical Property 



This work was partially supported by the Brazilian Agencies: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ). The authors wish to thank L. Kuhn from Hysitron for fruitful discussions.


  1. 1.
    Bushan B, Koinkar VN (1994) Appl Phys Lett 64(13):1653. doi: CrossRefGoogle Scholar
  2. 2.
    Garcia R, Perez R (2002) Surf Sci Rep 47:197. doi: CrossRefGoogle Scholar
  3. 3.
    Cretin B, Vairac P (1998) Appl Phys A 66:S235. doi: CrossRefGoogle Scholar
  4. 4.
    Tai K, Dao M, Suresh S, Palazoglu A, Ortiz C (2007) Nat Mater 6:454. doi: CrossRefGoogle Scholar
  5. 5.
    Vanlandingham MR, McKnight SH, Palmese GR, Elings JR, Huang X, Bogetti TA, Eduljee RF, Gillespie JW (1997) J Adhes 64:31. doi: CrossRefGoogle Scholar
  6. 6.
    Kracke B, Damaschke B (2000) Appl Phys Lett 77(3):361. doi: CrossRefGoogle Scholar
  7. 7.
    Oliver WC, Pharr GM (1992) J Mater Res 7(6):1564. doi: CrossRefGoogle Scholar
  8. 8.
    Swiss Center for Electronics and Microtechnology, AFM tip tester., CSEM, Neuchatel, Switzerland. Last visited: 12 December 2007
  9. 9.
    Villarrubia JS (1997) J Res Natl Inst Stand Technol 102:425CrossRefGoogle Scholar
  10. 10.
    Billmeyer FW (1984) Textbook of polymer science, 3rd edn. Wiley-Interscience, New YorkGoogle Scholar
  11. 11.
    Swadener JG, George EP, Pharr GM (2002) J Mech Phys Solids 50:681. doi: CrossRefGoogle Scholar
  12. 12.
    Hyon CK, Choi SC, Hwang SW, Ahn D, Young K, Kim EK (1999) Appl Phys Lett 75:292. doi: CrossRefGoogle Scholar
  13. 13.
    Field JS, Swain MV (1993) J Mater Res 8(2):297. doi: CrossRefGoogle Scholar
  14. 14.
    Bourhis Le E, Patriarche G (2003) Prog Cryst Growth Charact Mater 47:1. doi: CrossRefGoogle Scholar
  15. 15.
    Bradby JE, Williams JS, Wong-Leung J, Swain MV, Munroe P (2001) Appl Phys Lett 78:3235. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Departamento de FísicaPontifícia Universidade Católica do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations