Advertisement

Journal of Materials Science

, Volume 43, Issue 14, pp 5014–5016 | Cite as

Synthesis of feather-like carbon nanosheet arrays by radio frequency plasma technique

  • Xuguang Liu
  • Dongju Fu
  • Husheng Jia
  • Bingshe XuEmail author
Article

Abstract

Feather-like aligned carbon nanosheet arrays with uniform structures were synthesized from coal by radio-frequency (RF) plasma technique. The morphologies and structures of the products were characterized by FESEM, HRTEM, and Raman spectroscopy. The results clearly indicated that the aligned nanosheet arrays with high purity and high packing density could be prepared from coal. The nanosheet arrays consisted of carbon sheets with clear feather configuration, and a narrow length distribution ranging from 20–30 μm. The growth mechanism of the nanosheet arrays was discussed in terms of the chemical structure of coal and RF plasma chemistry.

Keywords

Fullerene FESEM Image Aromatic Fragment Carbon Sheet Plasma Technique 

Notes

Acknowledgements

We thank Dr Qiangang Fu (Northwestern Polytechnical University) for inspiring discussions. This work was supported by Key Project of National Natural Science Foundation of China (No. 90306014) and Shanxi Scientific Research Foundation for Returned Scholars (No. 200428).

References

  1. 1.
    Kroto HW, Heath JR, Brien SCO et al (1985) Nature 318:162. doi: https://doi.org/10.1038/318162a0 CrossRefGoogle Scholar
  2. 2.
    Iijima S (1991) Nature 354(6348):56. doi: https://doi.org/10.1038/354056a0 CrossRefGoogle Scholar
  3. 3.
    Cho SH, Lee EJ, Lee HM et al (2006) Adv Mater 18:60. doi: https://doi.org/10.1002/adma.200501600 CrossRefGoogle Scholar
  4. 4.
    Pang LSK, Vassallo AM, Wilson MA (1991) Nature 352:480. doi: https://doi.org/10.1038/352480a0 CrossRefGoogle Scholar
  5. 5.
    Tian YJ, Zhang YL, Wang BJ et al (2004) Carbon 42:2597. doi: https://doi.org/10.1016/j.carbon.2004.05.042 CrossRefGoogle Scholar
  6. 6.
    Du AB, Liu XG, Fu DJ et al (2007) Fuel 86(1–2):294. doi: https://doi.org/10.1016/j.fuel.2006.05.031 CrossRefGoogle Scholar
  7. 7.
    Fu DJ, Liu XG, Lin X et al (2007) J Mater Sci 42:805Google Scholar
  8. 8.
    Xiong GY, Wang DZ, Re ZF (2006) Carbon 44:969. doi: https://doi.org/10.1016/j.carbon.2005.10.015 CrossRefGoogle Scholar
  9. 9.
    Xu BS, Li TB, Hai PD et al (2006) Mater Lett 60:2042. doi: https://doi.org/10.1016/j.matlet.2005.12.106 CrossRefGoogle Scholar
  10. 10.
    Wang XM, Xu BS, Liu XG et al (2005) Phys B 357:277CrossRefGoogle Scholar
  11. 11.
    Pang LSK, Wilson MA (1993) Energy Fuel 7(3):436. doi: https://doi.org/10.1021/ef00039a019 CrossRefGoogle Scholar
  12. 12.
    Qiu JS, Zhang F, Zhou Y et al (2002) Fuel 81:1509. doi: https://doi.org/10.1016/S0016-2361(02)00069-8 CrossRefGoogle Scholar
  13. 13.
    Qiu JS, Zhou Y, Wang LN et al (1998) Carbon 36:465CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Xuguang Liu
    • 1
    • 2
  • Dongju Fu
    • 1
    • 3
  • Husheng Jia
    • 1
    • 3
  • Bingshe Xu
    • 1
    • 3
    Email author
  1. 1.Key Laboratory of Interface Science and Engineering in Advanced Materials of Taiyuan University of Technology, Ministry of EducationTaiyuanChina
  2. 2.College of Chemistry and Chemical EngineeringTaiyuan University of TechnologyTaiyuanChina
  3. 3.College of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuanChina

Personalised recommendations