Advertisement

Journal of Materials Science

, Volume 43, Issue 13, pp 4644–4651 | Cite as

Synthesis of eucryptite spheres

  • Flaurance Kenfack
  • Siegfried Vieth
Article
  • 83 Downloads

Abstract

Eucryptite spheres with average diameters in the range 40–60 μm were synthesized using a newly developed sol-emulsion-gel approach. Unlike the conventional method, emulsions were prepared with aqueous powder suspensions. With this scheme, a large-scale production of eucryptite spheres, from suspensions with a solid content of 50–60wt%, is readily straightforward. We found that emulsions are formed in a narrow synthesis range determined by the large number of experimental parameters such as the composition of the suspension, the type/amount of the organic solvent and of the surfactant. Although the formation of eucryptite spheres is sensitive to a small variation in these parameters, we have established optimal synthesis conditions for their formation.

Keywords

Surfactant MgAl2O4 Span80 Solid Loading Magnesium Nitrate 

Notes

Acknowledgments

The authors thank Prof. Dr. Bauer, head of the Institute, for her kind interest in this work. They gratefully acknowledge DFG (Deutsche Forschungsgemeinschaft) for a Research Fellowship. Thanks are also given to Dr. M. Uhlmann for performing the rheological measurements; H. Landeck for particle size measurements; Dr. V. Wilker for XRD measurements; Dr. W. Wiehe for SEM analysis (Central Analytical Laboratory, BTU Cottbus). G. Kunz is thanked for the technical support and P. Meinhardt for the friendly working atmosphere.

References

  1. 1.
    Lichtenstein AI, Jones RO (1998) Phys Rev B 58:6219. doi: https://doi.org/10.1103/PhysRevB.58.6219 CrossRefGoogle Scholar
  2. 2.
    Sleight AW (1998) Inorg Chem 37:2854. doi: https://doi.org/10.1021/ic980253h CrossRefGoogle Scholar
  3. 3.
    Chu CN, Saka N, Suh NP (1987) Mater Sci Eng 95:303. doi: https://doi.org/10.1016/0025-5416(87)90523-4 CrossRefGoogle Scholar
  4. 4.
    Roy R, Agrawal DK, McKinstry HA (1989) Ann Rev Mater Sci 19:59CrossRefGoogle Scholar
  5. 5.
    Naskar MK, Chatterjee M (2005) J Am Ceram Soc 88:38. doi: https://doi.org/10.1111/j.1551-2916.2005.00600.x CrossRefGoogle Scholar
  6. 6.
    Chabanis G, Parkin IP, Williams DE (2001) J Mater Chem 11:1651. doi: https://doi.org/10.1039/b010049h CrossRefGoogle Scholar
  7. 7.
    Chatterjee M, Naskar MK, Ganguli D (1999) J Sol-Gel Sci Technol 16:143. doi: https://doi.org/10.1023/A:1008777524591 CrossRefGoogle Scholar
  8. 8.
    Liu JG, Wilcox DL (1995) J Mater Res 10:84. doi: https://doi.org/10.1557/JMR.1995.0084 CrossRefGoogle Scholar
  9. 9.
    Rajendran M, Bhattacharya AK (1999) Mater Sci Eng B60:217. doi: https://doi.org/10.1016/S0921-5107(99)00081-1 CrossRefGoogle Scholar
  10. 10.
    Ganguli D, Ganguli M (2003) In: Inorganic particle synthesis via macro- and microemulsions: a micrometer to nanometer landscape. Kluwer Academic/Plenum Publishers, New York, p 10Google Scholar
  11. 11.
    Chan KC, Ovenstone J, Ponton CB (2002) J Mater Sci 37:971. doi: https://doi.org/10.1023/A:1014399831079 CrossRefGoogle Scholar
  12. 12.
    Chatterjee M, Naskar MK, Ganguli D (2003) J Sol-Gel Sci Technol 28:217. doi: https://doi.org/10.1023/A:1026085217698 CrossRefGoogle Scholar
  13. 13.
    Bush AJ, Beyer R, Trautman R, Barbé CJ, Bartlett JR (2004) J Sol-Gel Sci Technol 32:85. doi: https://doi.org/10.1007/s10971-004-5770-z CrossRefGoogle Scholar
  14. 14.
    Chatterjee M, Enkhtuvshin D, Siladitya B, Ganguli D (1998) J Mater Sci 33:4937. doi: https://doi.org/10.1023/A:1004430218980 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Institute of Polymeric MaterialsBrandenburg University of TechnologyCottbusGermany
  2. 2.Institute of Polymeric Materials and CompositesFraunhofer PYCOTeltowGermany

Personalised recommendations