Journal of Materials Science

, Volume 43, Issue 12, pp 4348–4352 | Cite as

Indentation grid analysis of nanoindentation bulk and in situ properties of ceramic phases

  • S. GuicciardiEmail author
  • C. Melandri
  • L. Silvestroni
  • D. Sciti

Composites properties are often derived from the properties of the constituent phases measured in bulk forms. However, in situ properties can be different from those measured in bulk as a consequence of material processing [1, 2, 3]. In ceramic composites, for example, spurious phases can form due to the chemical interaction of different powders. The knowledge of in situ properties would allow a better characterization and tailoring of composites performances. Many ceramic composites are particle-reinforced composites so that the evaluation of in situ properties involves measurements in very small volumes. For some mechanical properties, this can be accomplished by nanoindentation tests. By nanoindentation, single microstructural elements can be tested as grains in polycrystals [4, 5] or single phases in composites [3, 6, 7, 8]. In this work, a comparison between nanoindentation bulk and in situ properties of some ceramic phases will be presented. Generally, in situ properties are...


Scanning Electronic Microscope Analysis Ceramic Composite Scanning Electronic Microscope Result Cumulative Distribution Function Indentation Mark 


  1. 1.
    Bei H, George EP, Pharr GM (2004) Scr Mater 51:875. doi: CrossRefGoogle Scholar
  2. 2.
    Scholz T, May M, Swain MV, Schneider GA, Claussen N (2003) Z Metallkd 94:819CrossRefGoogle Scholar
  3. 3.
    Gregory JR, Spearing SM (2005) Compos Sci Technol 65:595. doi: CrossRefGoogle Scholar
  4. 4.
    Ohmura T, Minor AM, Stach EA, Morris JW (2004) J Mater Res 19:3626. doi: CrossRefGoogle Scholar
  5. 5.
    Viswanathan GB, Lee E, Maher DM, Banerjee S, Fraser HL (2005) Acta Mater 53:5101. doi: CrossRefGoogle Scholar
  6. 6.
    Campo M, Urena A, Rams J (2005) Scr Mater 52:977. doi: CrossRefGoogle Scholar
  7. 7.
    Wang HF, Nelson JC, Gerberich WW, Deve HE (1994) Acta Metall Mater 42:695. doi: CrossRefGoogle Scholar
  8. 8.
    Marx DT, Riester L (1999) Carbon 37:1679. doi: CrossRefGoogle Scholar
  9. 9.
    Constantinides G, Ulm F, Van Vliet K (2003) Mater Struc 36:191CrossRefGoogle Scholar
  10. 10.
    Constantinides G, Chandran KSR, Ulm FJ, Van Vliet KJ (2006) Mater Sci Eng A Struct Mater 430:189CrossRefGoogle Scholar
  11. 11.
    Constantinides G, Ulm FJ (2007) J Mech Phys Solids 55:64. doi: CrossRefGoogle Scholar
  12. 12.
    Opeka MM, Talmy IG, Wuchina EJ, Zaykoski JA, Causey SJ (1999) J Eur Ceram Soc 19:2405. doi: CrossRefGoogle Scholar
  13. 13.
    Nakamura M, Matsumoto S, Hirano T (1990) J Mater Sci 25:3309. doi: CrossRefGoogle Scholar
  14. 14.
    Shackelford JF, Alexander W (2001) CRC materials science and engineering handbook. CRC Press, Boca Raton, FL, LondonGoogle Scholar
  15. 15.
    Kral C, Lengauer W, Rafaja D, Ettmayer P (1998) J Alloys Compds 265:215. doi: CrossRefGoogle Scholar
  16. 16.
    Okamoto NL, Kusakari M, Tanaka K, Inui H, Yamaguchi M, Otani S (2003) J Appl Phys 93:88. doi: CrossRefGoogle Scholar
  17. 17.
    Pang W, Every AG, Comins JD, Stoddart PR, Zhang X (1999) J Appl Phys 86:311. doi: CrossRefGoogle Scholar
  18. 18.
    Bellosi A, Monteverde F, Babini GN (1996) In: Babini GN, Haviar M, Sajgalik P (eds) Engineering ceramics ‘96: higher reliability through processing. Kluwer Academic Publishers, Smolenice, Slovakia, p 197Google Scholar
  19. 19.
    Sciti D, Silvestroni L, Bellosi A (2006) J Am Ceram Soc 89:2668. doi: CrossRefGoogle Scholar
  20. 20.
    Sciti D, Monteverde F, Guicciardi S, Pezzotti G, Bellosi A (2006) Mater Sci Eng A Struct Mater 434:303CrossRefGoogle Scholar
  21. 21.
    Mazzocchi M, Bellosi A (2008) J Mater Sci Mater Med. doi: Google Scholar
  22. 22.
    Winterhalter F, Medri V, Ruffini A, Bellosi A (2004) Appl Surf Sci 225:100. doi: CrossRefGoogle Scholar
  23. 23.
    Oliver WC, Pharr GM (2004) J Mater Res 19:3. doi: CrossRefGoogle Scholar
  24. 24.
    Knight K (2000) Mathematical statistics. Chapman & Hall/CRC Press, Boca Raton, LondonGoogle Scholar
  25. 25.
    Ulm FJ, Vandamme M, Bobko C, Ortega JA (2007) J Am Ceram Soc 90:2677. doi: CrossRefGoogle Scholar
  26. 26.
    Newman A, Jewett T, Sampath S, Berndt C, Herman H (1998) J Mater Res 13:2662. doi: CrossRefGoogle Scholar
  27. 27.
    Gong JH, Miao HZ, Peng ZJ, Qi LH (2003) Mater Sci Eng A Struct Mater 354:140CrossRefGoogle Scholar
  28. 28.
    Durst K, Goken M, Vehoff H (2004) J Mater Res 19:85CrossRefGoogle Scholar
  29. 29.
    Johnson KL (1985) Contact mechanics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  30. 30.
    Saha R, Nix WD (2002) Acta Mater 50:23. doi: CrossRefGoogle Scholar
  31. 31.
    Bansal NP (2005) Handbook of ceramic composites. Kluwer Academic Publishers, BostonCrossRefGoogle Scholar
  32. 32.
    Russias J, Cardinal S, Fantozzi G, Bienvenu K, Bienvenu G (2004) Silicates Indus 69:311Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • S. Guicciardi
    • 1
    Email author
  • C. Melandri
    • 1
  • L. Silvestroni
    • 1
  • D. Sciti
    • 1
  1. 1.Institute of Science and Technology for CeramicsCNR-ISTECFaenzaItaly

Personalised recommendations