Advertisement

Journal of Materials Science

, Volume 43, Issue 13, pp 4483–4486 | Cite as

Adiabatic shear failure of high reinforcement content aluminum matrix composites

  • G. H. Wu
  • D. Z. ZhuEmail author
  • G. Q. Chen
  • L. T. Jiang
  • Q. Zhang
Article

Abstract

Dynamic failure behaviors of high reinforcement content TiB2/Al composites were experimentally investigated using split Hopkinson pressure bar (SHPB). The TiB2/Al composites showed high flow stresses and good plastic deformation ability at high strain rates. Adiabatic temperature rise decreased the flow stresses of TiB2/Al composites, which was verified by the prediction of Johnson–Cook model. While the predictions by Cowper–Symonds model exhibited obvious strain hardening characteristic, the values of which were much higher than those of the Johnson–Cook model and the experimental. The composites were failed macroscopically in brittle fracture and some phase transformation bands were found on the shearing surfaces. The dynamic failure behavior of TiB2/Al composites was predominated by the formation of adiabatic shear bands.

Keywords

Flow Stress Shear Layer Adiabatic Shear Adiabatic Shear Band Unit Cell Model 

References

  1. 1.
    Wei Q, Kecskes L, Jiao T, Hartwig KT, Ramesh KT, Ma E (2004) Acta Mater 52:1859. doi: https://doi.org/10.1016/j.actamat.2003.12.025 CrossRefGoogle Scholar
  2. 2.
    Rosakis AJ, Ravichandran G (2000) Int J Solids Struct 37:331. doi: https://doi.org/10.1016/S0020-7683(99)00097-9 CrossRefGoogle Scholar
  3. 3.
    Wang XB (2006) Trans Nonferrous Met Soc China 16:333. doi: https://doi.org/10.1016/S1003-6326(06)60057-5 CrossRefGoogle Scholar
  4. 4.
    Ling Z (2000) J Comp Mater 34:101. doi: https://doi.org/10.1106/4ET5-AB4L-B6XT-TR08 Google Scholar
  5. 5.
    Owolabi GM, Odeshi AG, Singh MNK, Bassim MN (2007) Mater Sci Eng A 457:114. doi: https://doi.org/10.1016/j.msea.2006.12.034 CrossRefGoogle Scholar
  6. 6.
    Dai LH, Ling Z, Bai YL (1999) Scripta Mater 41:245. doi: https://doi.org/10.1016/S1359-6462(99)00153-0 CrossRefGoogle Scholar
  7. 7.
    Dai LH, Liu LF, Bai YL (2004) Int J Solids Struct 41:5979. doi: https://doi.org/10.1016/j.ijsolstr.2004.05.023 CrossRefGoogle Scholar
  8. 8.
    Zhang Q, Chen GQ, Wu GH, Xiu ZY, Luan BF (2003) Mater Lett 57:1453. doi: https://doi.org/10.1016/S0167-577X(02)01006-6 CrossRefGoogle Scholar
  9. 9.
    Zhao M, Wu GH, Dou ZY, Jiang LT (2004) Mater Sci Eng A 374:303. doi: https://doi.org/10.1016/j.msea.2004.03.003 CrossRefGoogle Scholar
  10. 10.
    Bao G, Lin Z (1996) Acta Mater 44:1011. doi: https://doi.org/10.1016/1359-6454(95)00236-7 CrossRefGoogle Scholar
  11. 11.
    Li Y, Ramesh KT, Chin ESC (2000) Acta Mater. 48:1563. doi: https://doi.org/10.1016/S1359-6454(99)00430-9 CrossRefGoogle Scholar
  12. 12.
    Li Y, Ramesh KT (1998) Acta Mater 46:5633. doi: https://doi.org/10.1016/S1359-6454(98)00250-X CrossRefGoogle Scholar
  13. 13.
    Marchi CS, Cao FH, Kouzeli M, Mortensen A (2002) Mater Sci Eng A 337:202. doi: https://doi.org/10.1016/S0921-5093(02)00035-7 CrossRefGoogle Scholar
  14. 14.
    Hui XD, Kou HC, He JP, Wang YL, Dong W, Chen GL (2002) Intermetallics 10:1065. doi: https://doi.org/10.1016/S0966-9795(02)00145-0 CrossRefGoogle Scholar
  15. 15.
    Symonds PS (1965) In: Huffington NJ (ed) Behavior of materials under impact loading. ASME, New York, p 106Google Scholar
  16. 16.
    Johnson GR, Cook WH (1985) Eng Fract Mech 21:31. doi: https://doi.org/10.1016/0013-7944(85)90052-9 CrossRefGoogle Scholar
  17. 17.
    Meyers MA (1994) Dynamic behavior of materials. Wiley, New York, p 228CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • G. H. Wu
    • 1
  • D. Z. Zhu
    • 1
    Email author
  • G. Q. Chen
    • 1
  • L. T. Jiang
    • 1
  • Q. Zhang
    • 1
  1. 1.School of Materials Science and EngineeringHarbin Institute of TechnologyHarbinPeople’s Republic of China

Personalised recommendations