Advertisement

Journal of Materials Science

, Volume 43, Issue 13, pp 4518–4526 | Cite as

Production and mechanical properties of metallic glass-reinforced Al-based metal matrix composites

  • S. ScudinoEmail author
  • K. B. Surreddi
  • S. Sager
  • M. Sakaliyska
  • J. S. Kim
  • W. Löser
  • J. Eckert
Article

Abstract

Al-based metal matrix composites were synthesized through powder metallurgy methods by hot extrusion of elemental Al powder blended with different amounts of metallic glass reinforcements. The glass reinforcement was produced by controlled milling of melt-spun Al85Y8Ni5Co2 glassy ribbons. The composite powders were consolidated into highly dense bulk specimens at temperatures within the supercooled liquid region. The mechanical properties of pure Al are improved by the addition of the glass reinforcements. The maximum stress increases from 155 MPa for pure Al to 255 and 295 MPa for the samples with 30 and 50 vol.% of glassy phase, respectively. The composites display appreciable ductility with a strain at maximum stress ranging between 7% and 10%. The mechanical properties of the glass-reinforced composites can be modeled by using the iso-stress Reuss model, which allows the prediction of the mechanical properties of a composite from the volume-weighted averages of the components properties.

Keywords

Glassy Phase Supercooled Liquid Region Glass Reinforcement Glassy Ribbon Exothermic Differential Scanning Calorimetry Peak 

Notes

Acknowledgements

The authors would like to thank B. Bartusch, M. Frey, H.-J. Klauß, and H. Schulze for technical assistance, and M. Stoica, S. Venkataraman, and P. Yu for stimulating discussions. This work was supported by the German Science Foundation under grant Ec 111/16–2.

References

  1. 1.
    Kainer KU (2006) In: Metal matrix composites. Custom-made materials for automotive and aerospace engineering. Wiley-VCH Verlag GmbH & Co, WeinheimGoogle Scholar
  2. 2.
    Embury JD, Lloyd DJ, Ramachandran TR (1989) Strengthening mechanisms in aluminum alloys. In: Vasudevan AK, Doherty RD (eds) Aluminum alloys—contemporary research and applications, vol 31, Ch 22. Academic Press, Inc., p 579Google Scholar
  3. 3.
    Murakami Y (1996) Aluminum-based alloys. In: Cahn RW, Haasen P, Kramer EJ (eds) Materials science and technology, vol 8, Ch 5. VCH, p 213Google Scholar
  4. 4.
    Hildeman GJ, Koczak MJ (1989) Powder-metallurgy aluminum alloys. In: Vasudevan AK, Doherty RD (eds) Aluminum alloys—contemporary research and applications, vol 31, Ch 11. Academic Press, Inc., p 323Google Scholar
  5. 5.
    Yu P, Kim KB, Das J, Baier F, Xu W, Eckert J (2006) Scripta Mater 54:1445. doi: https://doi.org/10.1016/j.scriptamat.2006.01.001 CrossRefGoogle Scholar
  6. 6.
    Inoue A (1998) Prog Mater Sci 43:365. doi: https://doi.org/10.1016/S0079-6425(98)00005-X CrossRefGoogle Scholar
  7. 7.
    He Y, Poon SJ, Shiflet GJ (1988) Science 241:1640. doi: https://doi.org/10.1126/science.241.4873.1640 CrossRefGoogle Scholar
  8. 8.
    Inoue A, Ohtera K, Tsai AP, Masumoto T (1988) Jpn J Appl Phys 27:L280. doi: https://doi.org/10.1143/JJAP.27.L280 CrossRefGoogle Scholar
  9. 9.
    Tsai AP, Inoue A, Masumoto T (1988) Metall Trans A 19:1369 doi: https://doi.org/10.1007/BF02662599 CrossRefGoogle Scholar
  10. 10.
    Inoue A, Amiya K, Yoshii I, Kimura HM, Masumoto T (1994) Mater Trans JIM 35:485CrossRefGoogle Scholar
  11. 11.
    Afonso CRM, Oliveira MFd, Bolfarini C, Botta Filho WJ, Kiminami CS (2003) Mater Sci Forum 416–418:388CrossRefGoogle Scholar
  12. 12.
    Fjeldly A, Roven HJ (1996) Acta Mater 44:3497. doi: https://doi.org/10.1016/1359-6454(96)00015-8 CrossRefGoogle Scholar
  13. 13.
    Eckert J (1997) Mater Sci Eng A 226:364. doi: https://doi.org/10.1016/S0921-5093(96)10646-8 CrossRefGoogle Scholar
  14. 14.
    Eckert J, Schultz L, Urban K (1988) J Less-Comm Metals 145:283CrossRefGoogle Scholar
  15. 15.
    Eckert J, Schultz L, Hellstern E, Urban K (1988) J Appl Phys 64:3224. doi: https://doi.org/10.1063/1.341540 CrossRefGoogle Scholar
  16. 16.
    Börner I, Eckert J (2001) Scripta Mater 45:237. doi: https://doi.org/10.1016/S1359-6462(01)01026-0 CrossRefGoogle Scholar
  17. 17.
    Seidel M, Eckert J, Bauer HD, Schultz L (1995) In: Otooni MA, Armstrong RW, Grant NJ, Ishizaki K (eds) Grain size and mechanical properties—fundamentals and applications. Mater. Res. Soc. Symp. Proc., Materials Research Society, Warrendale, PA, p 239Google Scholar
  18. 18.
    Calin M, Grahl H, Adam M, Eckert J, Schultz L (2004) J Mater Sci 39:5295. doi: https://doi.org/10.1023/B:JMSC.0000039232.67075.ed CrossRefGoogle Scholar
  19. 19.
    Villars P, Calvert LD (1985) In: Villars P, Calvert LD (eds) Pearson’s handbook of crystallographic data for intermetallic phases. Metals Park (OH), American Society for MetalsGoogle Scholar
  20. 20.
    Busch R, Bakke E, Johnson WL (1998) Acta Mater 46:4725. doi: https://doi.org/10.1016/S1359-6454(98)00122-0 CrossRefGoogle Scholar
  21. 21.
    Deledda S, Eckert J, Schultz L (2004) Mater Sci Eng A 375–377:804. doi: https://doi.org/10.1016/j.msea.2003.10.027 CrossRefGoogle Scholar
  22. 22.
    Chung WS, Chang SY, Lin SJ (1999) J Mater Res 14:803. doi: https://doi.org/10.1557/JMR.1999.0106 CrossRefGoogle Scholar
  23. 23.
    Slipenyuk A, Kuprin V, Milman Y, Goncharuk V, Eckert J (2006) Acta Mater 54:157. doi: https://doi.org/10.1016/j.actamat.2005.08.036 CrossRefGoogle Scholar
  24. 24.
    Louzguine DV, Inoue A (2002) J Mater Res 17:1014. doi: https://doi.org/10.1557/JMR.2002.0149 CrossRefGoogle Scholar
  25. 25.
    Kim HS (2000) Mater Sci Eng A 289:30. doi: https://doi.org/10.1016/S0921-5093(00)00909-6 CrossRefGoogle Scholar
  26. 26.
    Kim HS, Hong SI, Kim SJ (2001) J Mater Proc Tech 112:109. doi: https://doi.org/10.1016/S0924-0136(01)00565-9 CrossRefGoogle Scholar
  27. 27.
    Chawla KK (1987) Composite materials, science and engineering, Ch. 10. Springer-Verlag, New York, p 177Google Scholar
  28. 28.
    Kelly A (1971) In: Kelly A, Nicholson RB (eds) Particle and fibre reinforcement in strengthening methods in crystals, Ch. 8. Applied Science Publishers Ltd., London, p 433Google Scholar
  29. 29.
    Bruck HA, Rabin BH (1999) J Mater Sci 34:2241. doi: https://doi.org/10.1023/A:1004509220648 CrossRefGoogle Scholar
  30. 30.
    Mileiko ST (1969) J Mater Sci 4:974. doi: https://doi.org/10.1007/BF00555312 CrossRefGoogle Scholar
  31. 31.
    Kim HS, Warren PJ, Cantor B, Lee HR (1999) Nanostruct Mater 11:241. doi: https://doi.org/10.1016/S0965-9773(99)00037-9 CrossRefGoogle Scholar
  32. 32.
    Sarkar BK, Mukherjee MK, Natarajan A (1982) Z Werkstofftech 13:269CrossRefGoogle Scholar
  33. 33.
    Madsen B, Lilholt H (2003) Comp Sci Tech 63:1265. doi: https://doi.org/10.1016/S0266-3538(03)00097-6 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • S. Scudino
    • 1
    Email author
  • K. B. Surreddi
    • 1
  • S. Sager
    • 2
    • 3
  • M. Sakaliyska
    • 1
  • J. S. Kim
    • 4
  • W. Löser
    • 5
  • J. Eckert
    • 1
    • 6
  1. 1.IFW DresdenInstitut für Komplexe MaterialienDresdenGermany
  2. 2.FG Physikalische Metallkunde, FB 11 Material- und GeowissenschaftenTechnische Universität DarmstadtDarmstadtGermany
  3. 3.W.C. Heraeus GmbHHanauGermany
  4. 4.Research Center for Machine Parts and Materials ProcessingUniversity of UlsanUlsanRepublic of Korea
  5. 5.IFW DresdenInstitut für FestkörperforschungDresdenGermany
  6. 6.TU DresdenInstitut für WerkstoffwissenschaftDresdenGermany

Personalised recommendations