Journal of Materials Science

, Volume 43, Issue 20, pp 6704–6713 | Cite as

Mixed-mode crack growth in bonded composite joints under standard and impact-fatigue loading

  • Ian A. Ashcroft
  • Juan Pablo Casas-Rodriguez
  • Vadim V. Silberschmidt
Stretching the Endurance Boundary of Composite Materials: Pushing the Performance Limit of Composite Structures

Abstract

Carbon fibre reinforced polymers (CFRPs) are now well established in many high-performance applications and look set to see increased usage in the future, especially if lower cost manufacturing and solutions to certain technical issues, such as poor out-of-plane strength, can be achieved. A significant question when manufacturing with CFRP is the best joining technique to use, with adhesive bonding and mechanical fastening currently the two most popular methods. It is a common view that mechanical fastening is preferred for thicker sections and adhesive bonding for thinner ones; however, advances in the technology and better understanding of ways to design joints have lead to increasing consideration of adhesive bonding for traditionally mechanically fastened joints. In high-performance applications fatigue loading is likely and in some cases repetitive low-energy impacts, or impact fatigue, can appear in the load spectrum. This article looks at mixed-mode crack growth in epoxy bonded CFRP joints in standard and impact fatigue. It is shown that the back-face strain technique can be used to monitor cracking in lap-strap joints (LSJs) and piezo strain gauges can be used to measure the strain response of impacted samples. It is seen that there is significant variation in the failure modes seen in the samples and that the crack propagation rate is highly dependent on the fracture mode. Furthermore, it is found that the crack propagation rate is higher in impact fatigue than in standard fatigue even when the maximum load is significantly lower.

Notes

Acknowledgement

The authors are very grateful for a partial financial support by the Royal Society within the framework of its International Joint Projects scheme.

References

  1. 1.
    Cantwell W, Curtis PT, Morton J (1983) Composites 14:301. doi:10.1016/0010-4361(83)90020-4 CrossRefGoogle Scholar
  2. 2.
    Ramkumar RL (1983) Effect of low-velocity impact damage on the fatigue behaviour of graphite/epoxy laminates. In: O’Brien TK (ed) Long term behaviour of composites, ASTM STP 813, ASTM, Philadelphia, pp 116–135Google Scholar
  3. 3.
    Clark G, Saunders DS (1991) Mater Forum 15:333Google Scholar
  4. 4.
    Ray D, Sarkar BK, Bose NR (2002) Comp A 33:233. doi:10.1016/S1359-835X(01)00096-3 CrossRefGoogle Scholar
  5. 5.
    Khan B, Rao RMVGK, Venkataraman N (1994) J Reinf Plast Comp 14:1150Google Scholar
  6. 6.
    Sinmmazçelik T, Armağan A (2006) J Mater Sci A 41(19):6237. doi:10.1007/s10853-006-0720-5 CrossRefGoogle Scholar
  7. 7.
    Davies P (2005) Bonding of composites. In: Adams RD (ed) Adhesive bonding: science, technology and applications. Woodhead Publishing, Cambridge, pp 279–301Google Scholar
  8. 8.
    Tong L, Steven GP (1999) Analysis and design of structural bonded joints. Kluwer Academic Publishing, LondonGoogle Scholar
  9. 9.
    Adams RD, Comyn J, Wake WC (1997) Structural adhesive joints in engineering, 2nd edn. Chapman and Hall, LondonGoogle Scholar
  10. 10.
    Hart-Smith LJ (2002) J Compos Tech Res 24:133CrossRefGoogle Scholar
  11. 11.
    Ashcroft IA, Hughes DJ, Shaw SJ (2000) Assembly Autom 20:150. doi:10.1108/01445150010321797 CrossRefGoogle Scholar
  12. 12.
    Ashcroft IA, Hughes DJ, Shaw SJ (2001) Int J Adhes Adhes 21:87. doi:10.1016/S0143-7496(00)00038-5 CrossRefGoogle Scholar
  13. 13.
    Schön J, Starikov R (2000) Fatigue of joints in composites structures. In: Harris B (ed) Fatigue in composites. Woodhead Publishing Limited, Cambridge, pp 621–643Google Scholar
  14. 14.
    Mall S, Ramamurthy G, Rezaizdeh MA (1987) Compos Struct 8:31. doi:10.1016/0263-8223(87)90014-6 CrossRefGoogle Scholar
  15. 15.
    Ashcroft IA, Abdel Wahab MM, Crocombe AD, Hughes DJ, Shaw SJ (2001) J Adhesion 75:61. doi:10.1080/00218460108029594 CrossRefGoogle Scholar
  16. 16.
    Ashcroft IA (2004) J Strain Anal 39:707. doi:10.1243/0309324042379239 CrossRefGoogle Scholar
  17. 17.
    Sato C (2005) Impact behaviour of adhesively bonded joints. In: Adams RD (ed) Adhesive bonding: science, technology and applications. Woodhead Publishing, Cambridge, pp 164–187Google Scholar
  18. 18.
    Beevers A, Ellis MD (1984) Int J Adhes Adhes 4(1):13. doi:10.1016/0143-7496(84)90055-1 CrossRefGoogle Scholar
  19. 19.
    Kihara K, Isono H, Yamabe H, Sugibayashi T (2003) Int J Adhes Adhes 23:253. doi:10.1016/S0143-7496(03)00004-6 CrossRefGoogle Scholar
  20. 20.
    Adams RD, Harris JA (1996) Int J Adhes Adhes 16:61. doi:10.1016/0143-7496(95)00050-X CrossRefGoogle Scholar
  21. 21.
    Yokoyama T (2003) J Strain Anal 38(3):233. doi:10.1243/030932403765310563 CrossRefGoogle Scholar
  22. 22.
    Usui Y, Sakata O (1984) Jpn Soc Proc Eng 18(3):213Google Scholar
  23. 23.
    Casas-Rodriguez JP, Ashcroft IA, Silberschmidt VV (2007) Int J Sound Vib 308:467. doi:10.1016/j.jsv.2007.03.088 CrossRefGoogle Scholar
  24. 24.
    Casas-Rodriguez JP, Ashcroft IA, Silberschmidt VV (2007) Compos Sci Technol. doi:10.1016/j.compscitech.2008.04.030
  25. 25.
    Casas-Rodriguez JP, Ashcroft IA, Silberschmidt VV (2008) Compos Sci Technol. doi:10.1016/j.compscitech.2007.11.006
  26. 26.
    Brussat TR, Chiu ST, Mostvoy S (1977) Fracture mechanics for structural adhesive bonds—final report, AFML-TR-77-163, Air Force Materials Laboratory, Wright Patterson Air Force Base, Dayton, OHGoogle Scholar
  27. 27.
    Sethuraman R, Maiti SK (1988) Eng Fract Mech 30:227. doi:10.1016/0013-7944(88)90226-3 CrossRefGoogle Scholar
  28. 28.
    Rice JR (1968) J Appl Mech 35:379Google Scholar
  29. 29.
    Ashcroft IA, Abdel Wahab MM, Crocombe AD, Hughes DJ, Shaw SJ (2001) Compos Part A 32:45. doi:10.1016/S1359-835X(00)00131-7 CrossRefGoogle Scholar
  30. 30.
    Abdel Wahab MM, Ashcroft IA, Crocombe AD, Hughes DJ, Shaw SJ (2001) Compos Part A 32:59. doi:10.1016/S1359-835X(00)00132-9 CrossRefGoogle Scholar
  31. 31.
    Ashcroft IA (2005) Fatigue. In: Adams RD (ed) Adhesive bonding: science, technology and applications. Woodhead Publishing, Cambridge, pp 209–237Google Scholar
  32. 32.
    Schijve J (2001) Fatigue of structures and materials. Kluwer Academic, LondonGoogle Scholar
  33. 33.
    Paris PC, Erdogan F (1963) Trans ASME D 85:528Google Scholar
  34. 34.
    Ashcroft IA, Shaw SJ (2002) Int J Adhes Adhes 22:151. doi:10.1016/S0143-7496(01)00050-1 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Ian A. Ashcroft
    • 1
  • Juan Pablo Casas-Rodriguez
    • 1
  • Vadim V. Silberschmidt
    • 1
  1. 1.Wolfson School of Mechanical and Manufacturing EngineeringLoughborough UniversityLeicestershireUK

Personalised recommendations