Journal of Materials Science

, Volume 43, Issue 13, pp 4527–4533 | Cite as

Preparation of micro-spherical ZrO2: Pr3+ phosphors by ultrasonic assisted CVS

  • Francisco Ramos-Brito
  • Manuel García-Hipólito
  • Castulo A. Alejo-Armenta
  • Enrique Camarillo
  • José M. Hernández
  • Héctor O. Murrieta
  • Ciro Falcony


Polycrystalline micro-spheres of undoped (ZO) and praseodymium-doped zirconia (PrZO) were obtained for different reactor temperatures (Tr) by the ultrasonic assisted chemical vapor synthesis process. SEM micrographs for Tr ≥ 400 °C show that (a) the materials were synthesized in a powder form in the presence of particles spherical in shape with an average size of 3 μm and a narrow size distribution, and (b) the production of spherical particles had a remarkable increase on rate production and no considerable changes on their average size as Tr rises. EDS studies show an atomic percent composition of O-67.5, Zr-30.0, Pr-0.3, and Cl-2.2 for PrZO micro-spheres obtained at 500 °C, which is in good agreement with zirconium oxide stoichiometry. XRD patterns of ZO and PrZO micro-spheres for Tr ≥ 400 °C show a polycrystalline tetragonal I structure with crystallite size values remaining below 20 nm. The photoluminescence emission spectrum of PrZO micro-spheres shows peaks overlapping the intrinsic emission of zirconia, attributed to inter-level transitions in Pr3+ ions: 490 and 505 nm: 3P0 − 3H4, 565 nm: 3P1 + 1I6 − 3H5, 615 nm: 1D2 − 3H4 and 645 nm: 3P0 − 3H6. The excitation spectrum for the main emission peak (615 nm) shows that Pr3+ ions in PrZO show a preferred excitation through its 4f5d absorption band.


Zirconia Energy Dispersive Spectroscopy Praseodymium Energy Dispersive Spectroscopy Result PrCl3 



The authors thank Leticia Baños, Daniel Brito-Ramírez, Lorena Uriarte, José Guzmán, Marcela Guerrero, Ana Soto, and Juan García Coronel for the technical support provided, and CECyT (Sinaloa-México) and CONACyT CB-2006-1-J1-I0002-57809 (México) for the financial grant for this investigation.


  1. 1.
    García-Hipólito M, Corona-Ocampo A, Álvarez-Fregoso O, Martínez E, Guzmán-Mendoza J, Falcony C (2004) Physica Status Solidi (A) 201:72. doi: CrossRefGoogle Scholar
  2. 2.
    García-Hipólito M, Guzmán-Mendoza J, Martínez E, Álvarez-Fregoso O, Falcony C (2004) Physica Status Solidi (A) 201:1510. doi: CrossRefGoogle Scholar
  3. 3.
    García-Hipólito M, Álvarez-Fregoso O, Guzmán J, Martínez E, Falcony C (2004) Physica Status Solidi (A) 201:R127. doi: CrossRefGoogle Scholar
  4. 4.
    Martínez-Martínez R, García-Hipólito M, Ramos-Brito F, Hernández-Pozos JL, Caldiño U, Falcony C (2005) J Phys Condens Matter 17:3647. doi: CrossRefGoogle Scholar
  5. 5.
    Blasse G, Grabmaier BC (1994) Luminescent materials. Springer, Berlin, pp 27–28, 40–50CrossRefGoogle Scholar
  6. 6.
    Subbarao EC (1981) In: Heuer AH, Hobbs LW (eds) Advances in ceramics, vol 3. The American Ceramic Society Inc., Columbus, OH, pp 1–24Google Scholar
  7. 7.
    Yu M, Lin J, Fu J, Zhang HJ (2003) J Mater Chem 13:1413. doi: CrossRefGoogle Scholar
  8. 8.
    Mckittrick J, Shea LE, Bacalski CF, Bosze EJ (1999) Displays 19:169. doi: CrossRefGoogle Scholar
  9. 9.
    Ramos-Brito F, García-Hipólito M, Martínez-Martínez R, Martínez-Sánchez E, Falcony C (2004) J Phys D: Appl Phys 37:L13. doi: CrossRefGoogle Scholar
  10. 10.
    De La Rosa-Cruz E, Díaz-Torres LA, Salas P, Rodríguez RA, Kumar GA, Meneses MA, Mosiño JF, Hernández JM, Barbosa-García O (2003) J Appl Phys 94:3509. doi: CrossRefGoogle Scholar
  11. 11.
    Millers D, Grigorjeva L, Opalinska A, Lojkowski W (2003) Solid State Phenom 94:135CrossRefGoogle Scholar
  12. 12.
    Friend CS, Patra A, Kapoor R, Prasad PN (2002) J Phys Chem B 106:1909. doi: Google Scholar
  13. 13.
    Reisfeld R, Zelner M, Patra A (2000) J Alloys Compd 300:147. doi: CrossRefGoogle Scholar
  14. 14.
    Ramos-Brito F, Murrieta H, Hernández J, Camarillo E, García-Hipólito M, Martínez-Martínez R, Álvarez-Fragoso O, Falcony C (2006) J Phys D: Appl Phys 39:2079. doi: CrossRefGoogle Scholar
  15. 15.
    Cullity BD, Stock SR (2001) Elements of X-ray diffraction, 3rd edn. Prentice Hall, New Jersey, pp 302–308Google Scholar
  16. 16.
    Messing GL, Zhang SC, Jayanthi GV (1993) J Am Ceram Soc 76:2707. doi: CrossRefGoogle Scholar
  17. 17.
    Langlet M, Joubert JC (1993) In: Rao CNR (ed) Chemistry of advanced materials. Blackwell Science, Oxford, UK, p 55Google Scholar
  18. 18.
    Garvie RC (1965) J Phys Chem 69:1238. doi: CrossRefGoogle Scholar
  19. 19.
    De Vicente FS, De Castro AC, De Souza MF, Siu Li M (2002) Thin Solid Films 418:222. doi: CrossRefGoogle Scholar
  20. 20.
    Barnard AS, Yeredla RR, Xu H (2006) Nanotechnology 17:3039. doi: CrossRefGoogle Scholar
  21. 21.
    Dexpert-Ghys J, Faucher M, Caro P (1984) J Solid State Chem 54:174. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Francisco Ramos-Brito
    • 1
  • Manuel García-Hipólito
    • 2
  • Castulo A. Alejo-Armenta
    • 1
  • Enrique Camarillo
    • 3
  • José M. Hernández
    • 3
  • Héctor O. Murrieta
    • 3
  • Ciro Falcony
    • 4
  1. 1.Laboratorio de Materiales Optoelectrónicos, DIDeCentro de Ciencias de SinaloaCuliacanMexico
  2. 2.Instituto de Investigaciones en Materiales de la Universidad Nacional Autónoma de México-UNAMCoyoacanMéxico
  3. 3.Instituto de Física de la Universidad Nacional Autónoma de México-UNAMObregonMexico
  4. 4.Departamento de FísicaCINVESTAV-IPNMaderoMexico

Personalised recommendations