Advertisement

Journal of Materials Science

, Volume 43, Issue 13, pp 4534–4540 | Cite as

Studies on ac response of zinc oxide pellets

  • P. P. SahayEmail author
  • S. Tewari
  • R. K. Nath
  • S. Jha
  • M. Shamsuddin
Article

Abstract

The ac responses of the ZnO pellets have been studied by ac measurements (impedance, capacitance and phase angle) over the temperature range 300–435 K. The ac conductivity of the ZnO pellets is observed to be proportional to ωs, where ω is the angular frequency and the exponent s is a temperature- and frequency-dependent parameter. Based on the existing theories of ac conduction, it has been concluded that for low frequency region (20 Hz–2 kHz), the dominant conduction mechanism in the ZnO pellets is multihopping at all temperatures, whereas for high frequency region (500 kHz–2 MHz), the small polaron tunneling model is the dominant mechanism in the pellets. Activation energies for ac conduction processes are estimated to be in the range of 0.028–0.277 eV which are found to vary with the frequency of the ac signal. These results are found to be consistent with the hopping model. The ac capacitance and the dielectric loss tangent are found to be dependent on both frequency and temperature. Such dependences have been explained taking into account the equivalent circuit model comprising a frequency-independent capacitive element in parallel with a temperature-dependent resistive element, both in series with a low value resistance. Impedance spectroscopy studies show single semicircular arcs in the complex impedance spectra at all temperatures in the range 300–435 K, with their centres lying below the real axis at a particular angle of depression indicating a multirelaxation behaviour in the pellets.

Keywords

Zinc Oxide Equivalent Circuit Model Dielectric Loss Tangent CoPc Zinc Phthalocyanine 

Notes

Acknowledgements

One of the authors (PPS) is grateful to Indian National Science Academy, New Delhi, for providing INSA Visiting Fellowship under which a part of the present investigation has been carried out at Department of Metallurgical Engineering, Banaras Hindu University, Varanasi, India.

References

  1. 1.
    Clarke DR (1999) J Am Ceram Soc 82:485CrossRefGoogle Scholar
  2. 2.
    Viswanath RN, Ramasamy S, Ramamoorthy R, Jayavel P, Nagarajan T (1995) Nanostruct Mater 6:993. doi: https://doi.org/10.1016/0965-9773(95)00229-4 CrossRefGoogle Scholar
  3. 3.
    Saito S, Miyayama M, Koumoto K, Yanagida H (1985) J Am Ceram Soc 68:40. doi: https://doi.org/10.1111/j.1151-2916.1985.tb15248.x CrossRefGoogle Scholar
  4. 4.
    Sahay PP, Tewari S, Jha S, Shamsuddin M (2005) J Mat Sci 40:4791. doi: https://doi.org/10.1007/s10853-005-0519-9 CrossRefGoogle Scholar
  5. 5.
    Greuter F, Blatter G (1990) Semicond Sci Technol 5:111CrossRefGoogle Scholar
  6. 6.
    Dong LF, Cui ZL, Zhang ZK (1997) Nanostruct Mater 8:815. doi: https://doi.org/10.1016/S0965-9773(98)00005-1 CrossRefGoogle Scholar
  7. 7.
    Van De Pol FCM (1990) Ceram Bull 69:1959Google Scholar
  8. 8.
    Jones A, Jones TA, Mann B, Griffith JG (1984) Sens Actuators 5:75. doi: https://doi.org/10.1016/0250-6874(84)87008-0 CrossRefGoogle Scholar
  9. 9.
    Baruwati B, Kumar DK, Manorama SV (2006) Sens Actuators B 119:676. doi: https://doi.org/10.1016/j.snb.2006.01.028 CrossRefGoogle Scholar
  10. 10.
    Arshak K, Gaiden I (2005) Mater Sci Eng B 118:44. doi: https://doi.org/10.1016/j.mseb.2004.12.061 CrossRefGoogle Scholar
  11. 11.
    Cheng XL, Zhao H, Huo LH, Gao S, Zhao JG (2004) Sens Actuators B 102:248. doi: https://doi.org/10.1016/j.snb.2004.04.080 CrossRefGoogle Scholar
  12. 12.
    Basu S, Dutta A (1994) Sens Actuators B 22:83. doi: https://doi.org/10.1016/0925-4005(94)87004-7 CrossRefGoogle Scholar
  13. 13.
    Ondo-Ndong R, Ferblantier G, Pascal-Delannoy F, Boyer A, Foucaran A (2003) Microelectron J 34:1087. doi: https://doi.org/10.1016/S0026-2692(03)00198-8 CrossRefGoogle Scholar
  14. 14.
    Nagaraju DJ, Krupanidhi SB (2006) Mater Sci Eng B 133:70. doi: https://doi.org/10.1016/j.mseb.2006.05.005 CrossRefGoogle Scholar
  15. 15.
    Sahay PP, Tewari S, Nath RK (2007) Cryst Res Technol 42:723. doi: https://doi.org/10.1002/crat.200610895 CrossRefGoogle Scholar
  16. 16.
    Hong YW, Kim JH (2004) Ceram Int 30:1307. doi: https://doi.org/10.1016/j.ceramint.2003.12.026 CrossRefGoogle Scholar
  17. 17.
    Andres-Verges M, West AR (1997) J Electroceramics 1:125CrossRefGoogle Scholar
  18. 18.
    Jose J, Khadar MA (1999) Nanostruct Mater 11:1091. doi: https://doi.org/10.1016/S0965-9773(99)00399-2 CrossRefGoogle Scholar
  19. 19.
    Abram EJ, Sinclair DC, West AR (2003) J Electroceramics 10:165CrossRefGoogle Scholar
  20. 20.
    Klug HP, Alexander LE (1974) X-ray diffraction procedures for polycrystalline and amorphous materials. Wiley, New YorkGoogle Scholar
  21. 21.
    Pollak M, Geballe TH (1961) Phys Rev 122:1742. doi: https://doi.org/10.1103/PhysRev.122.1742 CrossRefGoogle Scholar
  22. 22.
    Pollak M (1971) Philos Mag 23:519. doi: https://doi.org/10.1080/14786437108216402 CrossRefGoogle Scholar
  23. 23.
    Jonscher AKJ (1972) Non-Cryst Solids. 810:293 doi: https://doi.org/10.1016/0022-3093(72)90151-2 CrossRefGoogle Scholar
  24. 24.
    Meng LJ, Adritsck YM, Dos Santos MP (1994) Vacuum 45:19. doi: https://doi.org/10.1016/0042-207X(94)90334-4 CrossRefGoogle Scholar
  25. 25.
    Goswami A, Goswami AP (1973) Thin Solid Films 16:175. doi: https://doi.org/10.1016/0040-6090(73)90166-1 CrossRefGoogle Scholar
  26. 26.
    Shihub SI, Gould RD (1995) Thin Solid Films 254:187. doi: https://doi.org/10.1016/0040-6090(94)06240-L CrossRefGoogle Scholar
  27. 27.
    Saleh AM, Abu-Hilal AO, Gould RD (2003) Curr Appl Phys 3:345. doi: https://doi.org/10.1016/S1567-1739(02)00243-2 CrossRefGoogle Scholar
  28. 28.
    Amar NM, Saleh AM, Gould RD (2003) Appl Phys A 76:77. doi: https://doi.org/10.1007/s003390201306 CrossRefGoogle Scholar
  29. 29.
    Gould RD, Din M (1999) Superficies y Vacio 9:230Google Scholar
  30. 30.
    Ismail BB, Gould RD (1996) Proc SPIE 2780:46. doi: https://doi.org/10.1117/12.238200 CrossRefGoogle Scholar
  31. 31.
    Abu-Hilal AO, Gould RD, Abu-Taha MI, Saleh AM (2007) Int J Mod Phys B 21:55. doi: https://doi.org/10.1142/S021797920703587X CrossRefGoogle Scholar
  32. 32.
    Choudhary RNP, Bhunia U (2002) J Mater Sci 37:5177. doi: https://doi.org/10.1023/A:1021019412533 CrossRefGoogle Scholar
  33. 33.
    Macdonald JR, Johnson WB (2005). In: Barsoukov E, Macdonald JR (eds) Impedance spectroscopy: theory, experiment and applications. Wiley-Interscience, NJGoogle Scholar
  34. 34.
    Chandra Bose A, Balaya P, Thangadurai P, Ramasamy S (2003) J Phys Chem Solids 64:659. doi: https://doi.org/10.1016/S0022-3697(02)00368-2 CrossRefGoogle Scholar
  35. 35.
    Lal M, Batham PK, Goyal N (1995) Sol Energy Mater Solar Cells 36:111. doi: https://doi.org/10.1016/0927-0248(94)00166-P CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • P. P. Sahay
    • 1
    • 2
    Email author
  • S. Tewari
    • 1
  • R. K. Nath
    • 1
  • S. Jha
    • 3
  • M. Shamsuddin
    • 3
  1. 1.Department of PhysicsNational Institute of TechnologySilcharIndia
  2. 2.Department of PhysicsMotilal Nehru National Institute of TechnologyAllahabadIndia
  3. 3.Department of Metallurgical EngineeringBanaras Hindu UniversityVaranasiIndia

Personalised recommendations