Advertisement

Journal of Materials Science

, Volume 43, Issue 23–24, pp 7457–7464 | Cite as

Solid-state amorphization of Cu + Zr multi-stacks by ARB and HPT techniques

  • Y. F. Sun
  • Y. Todaka
  • M. Umemoto
  • N. Tsuji
Ultrafine-Grained Materials

Abstract

A series of CuZr binary alloys with wide composition range were fabricated through ARB and HPT techniques using pure Cu and Zr metals as the starting materials. Bulk alloy sheets with thickness of about 0.8 mm after ARB process and alloy disks with 0.30 mm in thickness and 10 mm in diameter after HPT process can be obtained, respectively. The structures of all the alloys were found to be gradually refined with the increase of ARB cycles or HPT rotations. As a result, nanoscale multiple-layered structure was formed for the 10 cycled ARBed specimens, which could partially transform into amorphous phase during subsequent low temperature annealing. While for the as-HPTed sample, the alloy was completely amorphized after 20 rotations without any heat treatment. The thermal stabilities of the amorphous alloys were studied. The deformation behavior and the amorphization mechanism during the ARB and HPT process were put forward and discussed.

Keywords

Equal Channel Angular Pressing Accumulative Roll Bonding High Pressure Torsion CuZr Differential Scanning Calorimeter Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

The present study was financially supported by the Grant-in-Aid for Scientific Research on Priority Area “Materials Science of Bulk Metallic Glasses” and the Global COE program “Center of Excellent for Advanced Structural and Functional Materials Design” in Osaka University both through MEXT, Japan.

References

  1. 1.
    Johnson WL (1999) MRS Bull 24:42Google Scholar
  2. 2.
    Chen HS (1980) Rep Prog Phys 43:353. doi: 10.1088/0034-4885/43/4/001 CrossRefADSGoogle Scholar
  3. 3.
    Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103. doi: 10.1016/S0079-6425(99)00007-9 CrossRefGoogle Scholar
  4. 4.
    Langdon TG (2006) Rev Adv Mater Sci 11:34Google Scholar
  5. 5.
    Saito Y, Utsunomiya H, Tsuji N (1999) Acta Mater 47:579. doi: 10.1016/S1359-6454(98)00365-6 CrossRefGoogle Scholar
  6. 6.
    Sagel A, Sieber H, Fecht HJ (1998) Acta Mater 46:4233. doi: 10.1016/S1359-6454(98)00097-4 CrossRefGoogle Scholar
  7. 7.
    Wilde G, Rosner H (2007) J Mater Sci 42:1772. doi: 10.1007/s10853-006-0986-7 CrossRefGoogle Scholar
  8. 8.
    Atzmon M, Verhoeven JD, Gibson ED (1984) Appl Phys Lett 45:1052. doi: 10.1063/1.95064 CrossRefADSGoogle Scholar
  9. 9.
    Hsieh PJ, Huang JC, Hung YP (2004) Mater Chem Phys 88:364. doi: 10.1016/j.matchemphys.2004.08.002 CrossRefGoogle Scholar
  10. 10.
    Ohsaki S, Kato S, Tsuji N (2007) Acta Mater 55:2885. doi: 10.1016/j.actamat.2006.12.027 CrossRefGoogle Scholar
  11. 11.
    Sun YF, Tsuji N, Kato S (2007) Mater Trans 48:1605. doi: 10.2320/matertrans.MJ200735 CrossRefGoogle Scholar
  12. 12.
    Hellstern E, Schultz L (1986) Appl Phys Lett 48:124. doi: 10.1063/1.96971 CrossRefADSGoogle Scholar
  13. 13.
    Stolyarov VV, Gunderov DV, Popov AG, Gaviko VS, Ermolenko AS (1998) J Alloy Compos 281:69. doi: 10.1016/S0925-8388(98)00774-9 CrossRefGoogle Scholar
  14. 14.
    Sergueeva AV, Song C, Valiev RZ, Mukherjee AK (2003) Mater Sci Eng A 339:159CrossRefGoogle Scholar
  15. 15.
    Revesz A, Hobor S, Labar JL, Zhilyaev AP, Kovacs Z (2006) J Appl Phys 100:103522. doi: 10.1063/1.2388868 CrossRefADSGoogle Scholar
  16. 16.
    Huang JY, Zhu YT, Liao XZ, Valiev RZ (2004) Philos Mag Lett 84(3):183. doi: 10.1080/09500830310001657353 CrossRefADSGoogle Scholar
  17. 17.
    El-Eskandarany Sherif M, Inoue A (2002) Metal Mater Trans 33:2145. doi: 10.1007/s11661-002-0046-0 CrossRefGoogle Scholar
  18. 18.
    Schwarz RB, Johnson WL (1983) Phys Rev Lett 51:415. doi: 10.1103/PhysRevLett.51.415 CrossRefADSGoogle Scholar
  19. 19.
    Zhang Q, Lai WS, Yang GW (2002) J Phys Condens Matter 12:6991. doi: 10.1088/0953-8984/12/31/301 CrossRefADSGoogle Scholar
  20. 20.
    Chu JP, Liu CT, Wang SF (2004) Phys Rev B 69:113410. doi: 10.1103/PhysRevB.69.113410 CrossRefADSGoogle Scholar
  21. 21.
    Wang D, Li Y, Sun BB (2004) Appl Phys Lett 20:4029. doi: 10.1063/1.1751219 CrossRefADSGoogle Scholar
  22. 22.
    Xu D, Duan G, Johnson WL (2004) Phys Rev Lett 92:245504. doi: 10.1103/PhysRevLett.92.245504 PubMedCrossRefADSGoogle Scholar
  23. 23.
    Inoue A, Zhang W (2004) Mater Trans 45:584. doi: 10.2320/matertrans.45.584 CrossRefGoogle Scholar
  24. 24.
    Xu D, Lohwongwatana B, Duan G (2004) Acta Mater 52:2621. doi: 10.1016/j.actamat.2004.02.009 CrossRefGoogle Scholar
  25. 25.
    Tang MB, Zhao DQ, Pan MX (2004) Chin Phys Lett 21:901. doi: 10.1088/0256-307X/21/4/001 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Adaptive Machine SystemsOsaka UniversitySuitaJapan
  2. 2.Department of Production Systems EngineeringToyohashi University of TechnologyToyohashiJapan

Personalised recommendations