Advertisement

Journal of Materials Science

, Volume 43, Issue 12, pp 4316–4322 | Cite as

Effect of microstructure on the mechanical properties of PAN-based carbon fibers during high-temperature graphitization

  • Fujie LiuEmail author
  • Haojing Wang
  • Linbing Xue
  • Lidong Fan
  • Zhenping Zhu
Article

Abstract

The change of microstructure of PAN-based carbon fibers has been studied as a function of heat-treatment temperature (1,800–2,800 °C, stretching 0%) by Raman spectroscopy and X-ray diffraction. With increasing heat-treatment temperature, both the crystallite size (La, Lc) and the degree of preferred orientation (g) increase, while the crystallite interlayer spacing (d002) decreases. The values of both Rs and Rc decrease, while Rs decreases more quickly. It implies that the degrees of skin-core of the carbon fibers increase. The relationship between mechanical properties and microstructure of the variants is also explored in detail.

Keywords

Crystallite Size Carbon Fiber Tensile Modulus Fiber Axis Highly Orient Pyrolytic Graphite 

Notes

Acknowledgements

The authors thank Professor He Fu for helpful discussions. The financial support of the National Ministries and Commissions Primary Foundation of China (grant no. 614002) is gratefully acknowledged.

References

  1. 1.
    Huang Y, Young RJ (1995) Carbon 33:97. doi: https://doi.org/10.1016/0008-6223(94)00109-D CrossRefGoogle Scholar
  2. 2.
  3. 3.
  4. 4.
    Endo M (1988) J Mater Sci 23:598. doi: https://doi.org/10.1007/BF01174692 CrossRefGoogle Scholar
  5. 5.
    Wicks BJ, Coyle RA (1976) J Mater Sci 11:376. doi: https://doi.org/10.1007/BF00551449 CrossRefGoogle Scholar
  6. 6.
    Dieter L, Oskar P, Rennhofer H et al (2007) Carbon 45:2801. doi: https://doi.org/10.1016/j.carbon.2007.09.011 CrossRefGoogle Scholar
  7. 7.
    Sadezky A, Muckenhuber H, Grothe H et al (2005) Carbon 43:1731. doi: https://doi.org/10.1016/j.carbon.2005.02.018 CrossRefGoogle Scholar
  8. 8.
    Montes-Moran MA, Young RJ (2002) Carbon 40:845. doi: https://doi.org/10.1016/S0008-6223(01)00212-3 CrossRefGoogle Scholar
  9. 9.
    Endo M, Kin C, Karaki T et al (1998) Carbon 36:1633. doi:101016/S0008-6223(98)00157-2CrossRefGoogle Scholar
  10. 10.
    Melanttis N, Tetlow PL, Galiotis C (1996) J Mater Sci 31:851. doi: https://doi.org/10.1007/BF00352882 CrossRefGoogle Scholar
  11. 11.
    Afanasyeva NI, Jawhari T, Klimenko IV et al (1996) Vib Spectrosc 11:79. doi: https://doi.org/10.1016/0924-2031(95)00063-1 CrossRefGoogle Scholar
  12. 12.
    Young RJ, Lu D, Day RJ et al (1992) J Mater Sci 27:5431. doi: https://doi.org/10.1007/BF00541602 CrossRefGoogle Scholar
  13. 13.
    Cuesta A, Dhamelincout P, Laureyns A et al (1998) J Mater Chem 8:2875. doi: https://doi.org/10.1039/a805841e CrossRefGoogle Scholar
  14. 14.
    Dresselhaus M, Dresselhaus SG (1981) Adv Phys 30:290. doi: https://doi.org/10.1080/00018738100101367 CrossRefGoogle Scholar
  15. 15.
    Sadezky A, Muckenhuber H, Grothe H et al (2005) Carbon 43:1731. doi: https://doi.org/10.1016/j.carbon.2005.02.018 CrossRefGoogle Scholar
  16. 16.
    Cuesta A, Dhamelincourt P, Laureyns J et al (1994) Carbon 32:1523. doi: https://doi.org/10.1016/0008-6223(94)90148-1 CrossRefGoogle Scholar
  17. 17.
    Wang Y, Alsmeyer DC, McCreery RL (1990) Chem Mater 2:557. doi: https://doi.org/10.1021/cm00011a018 CrossRefGoogle Scholar
  18. 18.
    Al-Jishi R, Dresselhaus G (1982) Phys Rev B 26:4514. doi: https://doi.org/10.1103/PhysRevB.26.4514 CrossRefGoogle Scholar
  19. 19.
    Moreton R, Watt W, Johnson W (1967) Nature 213:690. doi: https://doi.org/10.1038/213690a0 CrossRefGoogle Scholar
  20. 20.
    Cooper GA, Mayer RM (1971) J Mater Sci 6:60. doi: https://doi.org/10.1007/BF00550292 CrossRefGoogle Scholar
  21. 21.
    Johnson DJ (1987) J Phys D Appl Phys 20:287. doi: https://doi.org/10.1088/0022-3727/20/3/007 CrossRefGoogle Scholar
  22. 22.
    Young RJ, Lu D, Day RJ et al (1992) J Mater Sci 27:5431. doi: https://doi.org/10.1007/BF00541602 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Fujie Liu
    • 1
    • 2
    Email author
  • Haojing Wang
    • 1
  • Linbing Xue
    • 1
  • Lidong Fan
    • 1
  • Zhenping Zhu
    • 1
  1. 1.Institute of Coal ChemistryChinese Academy of ScienceTaiyuanPeople’s Republic of China
  2. 2.Graduate School of the Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations