Journal of Materials Science

, Volume 43, Issue 19, pp 6406–6413 | Cite as

Spark plasma sintering of UHTC powders obtained by self-propagating high-temperature synthesis

  • Roberta Licheri
  • Roberto OrrùEmail author
  • Clara Musa
  • Antonio Mario Locci
  • Giacomo CaoEmail author
Proceedings of the Symposium on Spark Plasma Synthesis and Sintering


Fully dense ZrB2–SiC and HfB2–SiC ultra-high-temperature ceramics (UHTCs) composites are fabricated by first synthesizing via self-propagating high-temperature synthesis (SHS) the composite powders from B4C, Si, and Zr or Hf reactants, and subsequently consolidating the product by spark plasma sintering (SPS) without the addition of any sintering aid. It was found that the SHS technique leads to the complete conversion of reactants to the desired products and the SPS allows for the full consolidation (>99.5% relative density) under the optimal operating conditions of 1800 °C/20 min/20 MPa and 1800 °C/30 min/20 MPa, for the cases of ZrB2–SiC and HfB2–SiC, respectively. Based on the results reported in this work, it can be stated that the combination of SHS and SPS methods represents a particularly rapid and convenient preparation route (lower sintering temperature and processing time) for UHTCs as compared to the techniques available in the literature for the fabrication of analogous products.


Spark Plasma Sinter Spark Plasma Sinter Process Zirconium Diboride Dwell Temperature Hafnium Diboride 



IM Innovative Materials s.r.l. (Italy) is gratefully acknowledged for granting the use of SPS apparatus. We also gratefully acknowledge the Regione Autonoma della Sardegna (Italy) for financial support through the project POR Sardegna 2000–2006 (Misura 3.13). In addition the authors would like to thank Dr. Luigi Scatteia from CIRA (Italy) for the measurements of resistance to oxidation of SPS samples.


  1. 1.
    Upadhya K, Yang JM, Hoffmann WP (1997) Am Ceram Soc Bull 58:51Google Scholar
  2. 2.
    Fahrenholtz WG, Hilmas GE, Talmy IG, Zaykoski JA (2007) J Am Ceram Soc 90:1347CrossRefGoogle Scholar
  3. 3.
    “Thermal protection materials and systems branch” NASA web site ( visited on October 2007
  4. 4.
    Levine SR, Opila EJ, Halbig MC, Kiser JD, Singh M, Salem JA (2003) J Eur Ceram Soc 22:2757CrossRefGoogle Scholar
  5. 5.
    Savino R, De Stefano Fumo P, Paterna D, Serpico M (2005) Aerosp Sci Technol 9:151CrossRefGoogle Scholar
  6. 6.
    Tripp WC, Davis HH, Graham HC (1973) Am Ceram Soc Bull 52:612Google Scholar
  7. 7.
    Monteverde F, Bellosi A (2003) J Electrochem Soc 150:552CrossRefGoogle Scholar
  8. 8.
    Monteverde F, Bellosi A (2005) Solid State Sci 7:622CrossRefGoogle Scholar
  9. 9.
    Monteverde F, Bellosi A (2005) J Eur Ceram Soc 25:1025CrossRefGoogle Scholar
  10. 10.
    Monteverde F, Guicciardi S, Bellosi A (2003) Mat Sci Eng A 346:310CrossRefGoogle Scholar
  11. 11.
    Fahrenholtz WG, Hilmas GE, Chamberlain AL, Zimmermann JW, Fahrenholtz B (2004) J Mater Sci 39:5951. doi: CrossRefGoogle Scholar
  12. 12.
    Chamberlain AL, Fahrenholtz WG, Hilmas GE, Ellerby DT (2004) J Am Ceram Soc 87:1170CrossRefGoogle Scholar
  13. 13.
    Marschall J, Erlich DC, Manning H, Duppler W, Ellerby D, Gasch M (2004) J Mater Sci 39:5959. doi: CrossRefGoogle Scholar
  14. 14.
    Opeka MM, Talmy IG, Wuchina EJ, Zaykoski JA, Causey SJ (1999) J Eur Ceram Soc 19:2404CrossRefGoogle Scholar
  15. 15.
    Zhang G-J, Deng Z-Y, Kondo N, Yang J-F, Ohji T (2000) J Am Ceram Soc 83:2330CrossRefGoogle Scholar
  16. 16.
    Monteverde F, Bellosi A (2004) J Mater Res 19:3576CrossRefGoogle Scholar
  17. 17.
    Medri V, Monteverde F, Balbo A, Bellosi A (2005) Adv Eng Mater 7:159CrossRefGoogle Scholar
  18. 18.
    Anselmi-Tamburini U, Kodera Y, Gasch M, Unuvar C, Munir ZA, Ohyanagi M, Johnson SM (2006) J Mater Sci 41:3097. doi: CrossRefGoogle Scholar
  19. 19.
    Monteverde F, Melandri C, Guicciardi S (2006) Mater Chem Phys 100:513CrossRefGoogle Scholar
  20. 20.
    Monteverde F (2007) J Alloys Comp 428:197CrossRefGoogle Scholar
  21. 21.
    Licheri R, Orrù R, Musa C, Cao G (2008) Mater Lett 62:432CrossRefGoogle Scholar
  22. 22.
    Munir ZA, Anselmi-Tamburini U, Ohyanagi M (2006) J Mater Sci 41:763. doi: CrossRefGoogle Scholar
  23. 23.
    Munir ZA, Anselmi-Tamburini U (1989) Mater Sci Rep 3:277CrossRefGoogle Scholar
  24. 24.
    Cincotti A, Licheri R, Locci AM, Orrù R, Cao G (2003) J Chem Technol Biot 78:122CrossRefGoogle Scholar
  25. 25.
    Locci AM, Orrù R, Cao G, Munir ZA (2006) J Am Ceram Soc 89:848CrossRefGoogle Scholar
  26. 26.
    Matthews FL, Rawlings R (1994) Composite materials: engineering and science. Chapman & Hall, Great BritainGoogle Scholar
  27. 27.
    Barin I (1993) Thermochemical data of pure substances. VHC, Weinheim, GermanyGoogle Scholar
  28. 28.
    Gasch M, Ellerby D, Irby E, Beckman S, Gusman M, Johnson S (2004) J Mater Sci 39:5925. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Dipartimento di Ingegneria Chimica e Materiali, Centro Studi sulle Reazioni Autopropaganti (CESRA), Unità di Ricerca del Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Unità di Ricerca del Consorzio Nazionale delle Ricerche (CNR)—Dipartimento di Energia e TrasportiUniversità degli Studi di CagliariCagliariItaly
  2. 2.PROMEA Scarl, c/o Dipartimento di FisicaCittadella Universitaria di MonserratoMonserrato (CA)Italy

Personalised recommendations