Advertisement

Journal of Materials Science

, Volume 43, Issue 12, pp 4297–4302 | Cite as

High thermal stability PS-b-PEO templated mesoporous titania film

  • Bing Ma
  • Jan MaEmail author
  • Gregory K. L. Goh
Article

Abstract

For many advanced applications, high thermal stability above 400 °C remains as a challenge for the ordered mesoporous titania films. In this work, we attempt to increase the thermal stability of mesoporous structure in titania film crystallization via PS-b-PEO block copolymer templating route. This paper reports the highly crystallized mesoporous titania film on silicon substrate thermally stable at 600 °C. The photocatalytic activity of the titania mesoporous film was also shown to be twice of that templated by F127 for degradation of methylene blue (MB). The present results also indicate that at low crystallinity, photocatalytic activity is controlled primarily by crystal perfection rather that surface area.

Keywords

Methylene Blue Photocatalytic Activity Block Copolymer Titania Film Mesoporous Titania 

References

  1. 1.
    Huo Q, Margolese DI, Stucky GD (1996) Chem Mater 8:1147. doi: https://doi.org/10.1021/cm960137h CrossRefGoogle Scholar
  2. 2.
    Smarsly B, Grosso D, Brezesinski T, Pinna N, Boissière C, Antonietti M, Sanchez C (2004) Chem Mater 16:2948. doi: https://doi.org/10.1021/cm0495966 CrossRefGoogle Scholar
  3. 3.
    Wu CW, Ohsuna T, Kuwabara M, Kuroda K (2006) J Am Chem Soc 128:4544. Medline. doi: https://doi.org/10.1021/ja060453p CrossRefGoogle Scholar
  4. 4.
    Grosso D, Babonneau F, Sanchez C, Soler-Illia GJdeAA, Crepaldi EL (2003) J Sol–Gel Sci Technol 26:561. doi: https://doi.org/10.1023/A:1020715803241 CrossRefGoogle Scholar
  5. 5.
    Ohsaki Y, Masaki N, Kitamura T, Wada Y, Okamoto T, Sekino T, Niihara K, Yanagida S (2005) Phys Chem 7:4157. doi: https://doi.org/10.1039/b511016e Google Scholar
  6. 6.
    Lawrence W, Tejedor-Tejedor MI, Anderson MA (1999) Environ Sci Technol 33:2070. doi: https://doi.org/10.1021/es981328j CrossRefGoogle Scholar
  7. 7.
    Takagi K, Makinoto T, Hiraiwa H, Negishi TJ (2004) Vac Sci Technol A 19:2931. doi: https://doi.org/10.1116/1.1415357 CrossRefGoogle Scholar
  8. 8.
    Simon PFW, Ulrich R, Spiess HW, Wiesner U (2001) Chem Mater 13:3464. doi: https://doi.org/10.1021/cm0110674 CrossRefGoogle Scholar
  9. 9.
    Yu K, Bartel C, Eisenberg A (1999) Langmuir 15:7157. doi: https://doi.org/10.1021/la981688k CrossRefGoogle Scholar
  10. 10.
    Kim DH, Sun Z, Russell TP, Knoll W, Gutmann JS (2005) Adv Funct Mater 15:1160. doi: https://doi.org/10.1002/adfm.200400462 CrossRefGoogle Scholar
  11. 11.
    Zhu L, Huang P, Chen WY, Ge Quirk QRP, Cheng SZD (2002) Macromolecules 35:3553. doi: https://doi.org/10.1021/ma012184n CrossRefGoogle Scholar
  12. 12.
    Li X, Lau KHA, Kim DH, Knoll W (2005), Langmuir 21:5212. Medline. doi: https://doi.org/10.1021/la046812g CrossRefGoogle Scholar
  13. 13.
    Liu ZQ, Kim DH, Wu XD, Boosahda L, Stone D, LaRose L, Russell TP (2002) Adv Mater 14:1373. doi: https://doi.org/10.1002/1521-4095(20021002)14:19<1373::AID-ADMA1373>3.0.CO;2-F CrossRefGoogle Scholar
  14. 14.
    Kim SH, Misner MJ, Xu T, Kimura M, Russell TP (2004) Adv Mater 16:226. doi: https://doi.org/10.1002/adma.200304906 CrossRefGoogle Scholar
  15. 15.
    Cheng YJ, Gutmann JS (2006) J Am Chem Soc 128:4658. Medline. doi: https://doi.org/10.1021/ja0562853 CrossRefGoogle Scholar
  16. 16.
    Yusuf MM, Imai H, Hirashima H (2001) J Non-Cryst Solids 285:90. doi: https://doi.org/10.1016/S0022-3093(01)00437-9 CrossRefGoogle Scholar
  17. 17.
    Grosso D, Soller-Illia GJdeAA, Babonneau F, Sanchez C, Albouy PA, Brunet-Brunet A, Ruud Balkenende A (2001) Adv Mater 13:1085. doi: https://doi.org/10.1002/1521-4095(200107)13:14<1085::AID-ADMA1085>3.0.CO;2-Q CrossRefGoogle Scholar
  18. 18.
    Sakatani Y, Grosso D, Nicole L, Boissière C, Soler-Illia deGJAA, Sanchez C (2006) J Mater Chem 16:77. doi: https://doi.org/10.1039/b512824m CrossRefGoogle Scholar
  19. 19.
    Grosso D, Soler-Illia GJdeAA, Crepaldi EL, Cagnol F, Sinturel C, Bourgeois A, Brunet-Bruneau A, Amenitsch H, Albouy PA, Sanchez C (2003) Chem Mater 15:4562. doi: https://doi.org/10.1021/cm031060h CrossRefGoogle Scholar
  20. 20.
    Zhang Y, Li J, Wang J (2006) Chem Mater 18:2917. doi: https://doi.org/10.1021/cm060450b CrossRefGoogle Scholar
  21. 21.
    Koganti VR, Dunphy D, Gowrishankar V, McGehee MD, Li X, Wang J, Rankin SE (2006) Nano Lett 6:2567. doi: https://doi.org/10.1021/nl061992v CrossRefGoogle Scholar
  22. 22.
    Wu CW, Ohsuan T, Kuwabara M, Kuroda K (2006) J Am Chem Soc 128:4544. Medline. doi: https://doi.org/10.1021/ja060453p CrossRefGoogle Scholar
  23. 23.
    Lakshimi S, Renganathan R, Fujita SJ (1995) Photochem Photobiol A: Chem 88:163. doi: https://doi.org/10.1016/1010-6030(94)04030-6 CrossRefGoogle Scholar
  24. 24.
    Zhang T, Oyama T, Aoshima A, Hidaka H, Zhao J, Serpone N (2001) J Photochem Photobiol A: Chem 140:163. doi: https://doi.org/10.1016/S1010-6030(01)00398-7 CrossRefGoogle Scholar
  25. 25.
    Segalman RA (2005) Mater Sci Eng Rep 48:191CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore
  2. 2.Institute of Materials Research and EngineeringSingaporeSingapore

Personalised recommendations