Journal of Materials Science

, Volume 43, Issue 12, pp 4282–4289 | Cite as

Application of the electrochemical machining technique for the characterization of zinc coatings

  • S. M. A. ShibliEmail author
  • R. Manu


Electrochemical machining is a useful technique for characterizing the inner alloy structure of metallic coatings. In the present study, hot-dip zinc galvanized coatings were fabricated and the microstructures were analyzed after exposing each layer of the coatings by successive anodic machining steps. With this method, the surface after each successive machining step would be free from any mechanical damage or segregation of the dissolution products over the machined surface. The characteristics of the alloy layers and their influence on the behavior of the coatings were investigated under a specific exposure condition. The corrosion performance of the iron-rich inner alloy layers was found to be better than that of the pure zinc top layer as revealed during electrochemical characterization. This paper provides insight into the correlation between the protection strength of the galvanic coating and the quantity of zinc in the coating.


Open Circuit Potential Anodic Dissolution Potential Shift Alloy Layer Cathodic Protection 



We thank Prof. Dr. P. Indrasenan, Head, Dept. of Chemistry, University of Kerala, for his kind administrative help.


  1. 1.
    Horng YT, Lin JH, Hsu JW, Shih HC, Wang JH, Chang TC, Hsu HP, Lin YC (2003) Mater Perform 42:32Google Scholar
  2. 2.
    Vosgien JM (2002) Revue de Metallurgie/Cahiers d` Information Techniques, (Fr), vol 99, p 709Google Scholar
  3. 3.
    Reumont G, Vogt JB, Iost A, Foct J (2001) Surf Coat Technol 139:265CrossRefGoogle Scholar
  4. 4.
    Bablik H (1950) Hot-dip galvanizing. E.F.N. Spon Ltd, LondonGoogle Scholar
  5. 5.
    Ferrier A (1979) Mem Et Sci Rev Met 76:777Google Scholar
  6. 6.
    Kubaschewaski O (1982) Iron binary phase diagram. Springer-Verlag, Berlin, p 172Google Scholar
  7. 7.
    Dauphin JY, Perrot P, Tchissambot UG (1987) Mem Et Sci Rev Met 84:329Google Scholar
  8. 8.
    Massalski TB (1990) Binary alloys phase diagrams, 2nd edn. ASM Hand book, p 1795Google Scholar
  9. 9.
    Kubota H, Kusakabe T, Hata S (2001) Japanese Patent 247 947Google Scholar
  10. 10.
    Carlsson P, Bexell U, Olsson M (2001) Wear 247:88CrossRefGoogle Scholar
  11. 11.
    Blau PJ (1992) Friction, lubrication and wear technology, glossary of terms, vol 18. ASM HandbookGoogle Scholar
  12. 12.
    Rigney DA, Chen LH, Naylor MGS, Rosenfield AR (1984) Wear 100:195CrossRefGoogle Scholar
  13. 13.
    Lohrengel MM, Rosenkranz Chr (2004) Corros Sci 47:785CrossRefGoogle Scholar
  14. 14.
    Ebeid SJ, Hewidy MS, El-Taweel TA, Youssef AH (2004) J Mater Process Tech 149:432CrossRefGoogle Scholar
  15. 15.
    Haisch T, Mittemeijer E, Schultze JW (2001) Electrochim Acta 47:235CrossRefGoogle Scholar
  16. 16.
    Datta M, Landolt D (1980) Electrochim Acta 25:1255CrossRefGoogle Scholar
  17. 17.
    Biber HE (1988) Metall Trans A 19:1603CrossRefGoogle Scholar
  18. 18.
    Strutzenberger J, Faderl J (1998) Metall Mater Trans A 29:631CrossRefGoogle Scholar
  19. 19.
    Vincent G, Bonasso N, Lecomte JS, Colinet B, Gay B, Esling C (2006) J Mater Sci 41:5966CrossRefGoogle Scholar
  20. 20.
    Vazquez AJ, De damborenea JJ (1992) Brit Corros J 27:310CrossRefGoogle Scholar
  21. 21.
    Frappe AL, Linare A, Piessen P, Vacher JC (1985) Proceedings of the 14th international conference on hot-dip galvanizing, intergalva (EGGA)’85, London, pp 8.1–8.18Google Scholar
  22. 22.
    Johnsson T, Kucera V (1982) Proceedings of the 13th international conference on hot-dip galvanizing, intergalva (EGGA)’82, London, pp 47.1–47.6Google Scholar
  23. 23.
    Westerlund R (1979) Proceedings of the 12th international conference on hot-dip galvanizing, intergalva (EGGA)’79, London, p 320Google Scholar
  24. 24.
    Reumont G, Perrot P, Foct J (1998) J Mater Sci 33:4759CrossRefGoogle Scholar
  25. 25.
    Burns RM, Bradley WW (1967) Protective coatings for metals, 3rd edn. Reinhold Publishing CorporationGoogle Scholar
  26. 26.
    Giorgi ML, Guillot JB, Nicolle R (2005) J Mater Sci 40:2263CrossRefGoogle Scholar
  27. 27.
    Chirazi A, Quintin AP, Reumont G, Foct J (2007) Iron Steel Technol 4:193Google Scholar
  28. 28.
    Fenoel MNA, Reumont G, Goodwin F, Perrot P, Foct J (2006) Int J Mat Res 97:1183CrossRefGoogle Scholar
  29. 29.
    Quintin AP, Fenoel MNA, Chirazi A, Reumont G, Foct J, Goodwin F (2005) AISTech 2004—Iron and steel technology conference proceedings, vol 2, p 511Google Scholar
  30. 30.
    Reumont G, Perrot P, Dupin N, Dutheillet Y (2003) J Mater Sci Lett 22:975CrossRefGoogle Scholar
  31. 31.
    Reumont G, Maniez S, Gay B, Perrot P (2000) J Mater Sci Lett 19:2081CrossRefGoogle Scholar
  32. 32.
    Reumont G, Figeuiredo RSD, Foct J (1999) J Mater Sci Lett 18:1879CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of KeralaThiruvananthapuramIndia

Personalised recommendations