Journal of Materials Science

, Volume 43, Issue 15, pp 5045–5051 | Cite as

Microstructure evolution upon annealing of accumulative roll bonding (ARB) 1100 Al sheet materials: evolution of interface microstructures

  • Charles Kwan
  • Zhirui WangEmail author
Interface Science


The microstructure evolution upon annealing of 1100 aluminum samples that were accumulative roll bonding (ARB) processed were studied with the use of transmission electron microscopy. It was found that the ultra-fine microstructure resulted from the ARB process was not stable. Specifically, a two-stage grain growth behavior was observed, in which a relatively slower rate of grain growth was followed by a more rapid grain growth rate at higher annealing temperature. The bonding interfaces that were unique to the roll bonding process were found to have a significant influence on the grain growth behavior when the grain size of the material was of similar dimension as the bonding interface separation. Discontinuous pockets consisting of smaller grains were found to have formed upon annealing. These pockets represented the remnants of the heavily deformed layer from wire brushing.


Bonding Interface Boundary Migration Accumulative Roll Bonding Accumulative Roll Bonding Process Faying Surface 



The authors would like to acknowledge Dr. Suk-Bong Kang of The Korean Institute of Material Sciences for providing the samples used in this study. This project is funded by Natural Science and Engineering Research Council of Canada (NSERC).


  1. 1.
    Saito Y, Tsuji N, Utsunomiya H, Sakai T, Hong RG (1998) Scr Mater 39:1221. doi: CrossRefGoogle Scholar
  2. 2.
    Saito Y, Utsunomiya H, Tsuji N, Sakai T (1999) Acta Mater 47:579. doi: CrossRefGoogle Scholar
  3. 3.
    Vaidyanath LR, Milner DR (1960) Brit Weld J 7:1Google Scholar
  4. 4.
    Clemensen C, Juelstorp O, Bay N (1986) Metal Constr 18:625Google Scholar
  5. 5.
    Nicholas MG, Milner DR (1961) Brit Weld J 8:375Google Scholar
  6. 6.
    Xing ZP, Kang SB, Kim HW (2004) J Mater Sci 39:1259. doi: CrossRefGoogle Scholar
  7. 7.
    Xing ZP, Kang SB, Kim HW (2002) Metall Mater Trans A 33:1521. doi: CrossRefGoogle Scholar
  8. 8.
    Lee S-H, Lee CH,Lim CY (2004) Mater Sci Forum 449–452:161Google Scholar
  9. 9.
    Cao WQ, Liu Q, Godfrey A, Hansen N (2002) Mater Sci Forum 408–412:721Google Scholar
  10. 10.
    Huang X, Tsuji N, Hansen N, Minamino Y (2003) Mater Sci Eng A 340:265CrossRefGoogle Scholar
  11. 11.
    Kim Y-S, Lee T-O, Shin DH (2004) Mater Sci Forum 449–452:625CrossRefGoogle Scholar
  12. 12.
    Tsuji N, Ito Y, Saito Y, Minamino Y (2002) Scr Mater 47:893CrossRefGoogle Scholar
  13. 13.
    Tsuji N, Ito Y, Nakshima H, Yoshida F, Minamino Y (2002) Mater Sci Forum 396–402:423CrossRefGoogle Scholar
  14. 14.
    Kamikawa N, Tsuji N, Huang X, Hansen N (2006) Acta Mater 54:3055CrossRefGoogle Scholar
  15. 15.
    Kim H-W, Kang S-K, Tsuji N, Minamino Y (2005) Acta Mater 53:1737CrossRefGoogle Scholar
  16. 16.
    Kim H-W, Kang S-K, Tsuji N, Minamino Y (2006) Mater Sci Forum 512:85CrossRefGoogle Scholar
  17. 17.
    Jang YH, Kim SS, Han SZ, Lim CY, kim CJ, Goto M (2005) J Mater Sci 40:3527CrossRefGoogle Scholar
  18. 18.
    Jang YH, Kim SS, Han SZ, Lim CY, Kim CJ, Goto M (2005) Scr Mater 52:21CrossRefGoogle Scholar
  19. 19.
    Lee SH, Han SZ, Lim CY (2006) Key Eng Mater 317–318:239CrossRefGoogle Scholar
  20. 20.
    Tsuji N, Okuno S, Matsuura T, Koizumi Y, Minamino Y (2003) Mater Sci Forum 426–432:2667CrossRefGoogle Scholar
  21. 21.
    Tsuji N (2006) In: Altan BS (ed) Severe plastic deformation. Nova Science Publishers, pp 545–565Google Scholar
  22. 22.
    Vaidyanath LR, Nicholas MG, Milner DR (1959) Brit Weld J 6:13Google Scholar
  23. 23.
    Bay N (1986) Metal Constr 18:369Google Scholar
  24. 24.
    Kwan C, Wang Z, Kang S-B (2007) Mater Sci Eng A 480:148. doi:

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations