Advertisement

Journal of Materials Science

, Volume 43, Issue 12, pp 4340–4343 | Cite as

Gradual phase and morphology transformation of Fe3O4 nanoparticles to α-FeOOH nanorods in alcohol/water media in the presence of surfactant F127

  • Yong Yang
  • Ji-Sen JiangEmail author
Letter

Introduction

Iron oxide and oxyhydroxide have a wide range of potential applications in the production of pigments, catalysts, gas sensors, magnetic recording media, and raw materials of hard and soft magnets [1, 2, 3]. α-FeOOH (goethite) particles were traditionally used as pigments, or starting material in the production of α-Fe2O3 (hematite) and γ-Fe2O3 (maghemite). Acicular α-FeOOH particles are used in the production of maghemite and in various academic investigations in colloid and surface chemistry. For example, α-FeOOH nanorods have shown potential in mineral liquid crystals. Inspired by the unique properties of the 1-D structure, much work has been concentrated on the synthesis of its nanorods [4, 5]. Fe3O4 (magnetite), an important member of spinel-type ferrite, has already been applied in catalysis, ceramics, energy storage, magnetic data storage, ferrofluids clinical diagnosis, and medicine transporters [6, 7, 8]. Many methods have been reported for the synthesis of the Fe3O...

Keywords

Fe3O4 Pluronic Fe3O4 Nanoparticles Maghemite Amphiphilic Block Copolymer 

Notes

Acknowledgement

This research project is supported by Shanghai Nanotechnology Promotion Center (0652nm009, 0352nm113).

References

  1. 1.
    Serp P, Kalck P, Feurer R (2002) Chem Rev 102:3085. doi: https://doi.org/10.1021/cr9903508 CrossRefGoogle Scholar
  2. 2.
    Gong C, Chen D, Jiao X, Wang Q (2002) J Mater Chem 12:1844. doi: https://doi.org/10.1039/b201243j CrossRefGoogle Scholar
  3. 3.
    Neri G, Bonavita A, Galvagno S, Siciliano P, Capone S (2002) Sensor Actuat B: Chem 82:40CrossRefGoogle Scholar
  4. 4.
    Yang J, Mei S, Quaresma S, Norby P, Ferreira JMF (2005) Acta Mater 53:1479. doi: https://doi.org/10.1016/j.actamat.2004.12.001 CrossRefGoogle Scholar
  5. 5.
    Geng F, Zhao Z, Geng J, Cong H, Cheng HM (2007) Mater Lett 61:4794. doi: https://doi.org/10.1016/j.matlet.2007.03.036 CrossRefGoogle Scholar
  6. 6.
    Xu H, Cui L, Tong N, Gu H (2006) J Am Chem Soc 128:15582. doi: https://doi.org/10.1021/ja066165a CrossRefGoogle Scholar
  7. 7.
    Zhang DE, Zhang XJ, Ni XM, Song JM, Zheng HG (2007) Cryst Growth Des 7:2117. doi: https://doi.org/10.1021/cg060395j CrossRefGoogle Scholar
  8. 8.
    Kuhara M, Takeyama H, Tanaka T, Matsunaga T (2004) Anal Chem 76:6207. doi: https://doi.org/10.1021/ac0493727 CrossRefGoogle Scholar
  9. 9.
    Cheng FY, Su CH, Yang YS, Yeh CS, Tsai CY, Wu CL, Wu MT, Shieh DB (2005) Biomaterials 26:729. doi: https://doi.org/10.1016/j.biomaterials.2004.03.016 CrossRefGoogle Scholar
  10. 10.
    Hyeon T, Lee SS, Park J, Chung Y, Na HB (2001) J Am Chem Soc 123:12798. doi: https://doi.org/10.1021/ja016812s CrossRefGoogle Scholar
  11. 11.
    Sapieszko RS, Matijevic E (1980) J Colloid Interface Sci 74:405. doi: https://doi.org/10.1016/0021-9797(80)90210-6 CrossRefGoogle Scholar
  12. 12.
    Rockenberger J, Scher EC, Alivisatos AP (1999) J Am Chem Soc 121:11595. doi: https://doi.org/10.1021/ja993280v CrossRefGoogle Scholar
  13. 13.
    Xiong Y, Li Z, Li X, Hu B, Xie Y (2004) Inorg Chem 43:6540. doi: https://doi.org/10.1021/ic049018r CrossRefGoogle Scholar
  14. 14.
    Wang S, Xin H (1999) Radiat Phys Chem 56:567. doi: https://doi.org/10.1016/S0969-806X(99)00319-9 CrossRefGoogle Scholar
  15. 15.
    Cornell RM, Schneider W, Giovanoli R (1991) J Chem Soc Faraday Trans 87:869. doi: https://doi.org/10.1039/ft9918700869 CrossRefGoogle Scholar
  16. 16.
    Yang PD, Zhao DY, Margolese DI, Chmelka BF, Stucky GD (1998) Nature 396:152. doi: https://doi.org/10.1038/24132 CrossRefGoogle Scholar
  17. 17.
    Tian BZ, Liu XY, Tu B, Yu CZ, Fan J, Wang LM, Xie SH, Stucky GD, Zhao DY (2003) Nat Mater 2:159. doi: https://doi.org/10.1038/nmat838 CrossRefGoogle Scholar
  18. 18.
    Grosso D, Boissiere C, Smarsly B, Brezesinski T, Pinna N, Albouy PA, Amenitsch H, Antonietti M, Sanchez C (2004) Nat Mater 3:787. doi: https://doi.org/10.1038/nmat1206 CrossRefGoogle Scholar
  19. 19.
    Goltner CG, Antonietti M (1997) Adv Mater 9:431. doi: https://doi.org/10.1002/adma.19970090516 CrossRefGoogle Scholar
  20. 20.
    Brezesinski T, Antonietti M, Groenewolt M, Pinna N, Smarsly B (2005) New J Chem 29:237. doi: https://doi.org/10.1039/b412306a CrossRefGoogle Scholar
  21. 21.
    Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Nature 359:710. doi: https://doi.org/10.1038/359710a0 CrossRefGoogle Scholar
  22. 22.
    Zhao DY, Feng JL, Huo QS, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Science 279:548. doi: https://doi.org/10.1126/science.279.5350.548 CrossRefGoogle Scholar
  23. 23.
    Che S, Garcia-Bennett AE, Yokoi T, Sakamoto K, Kunieda H, Terasaki O, Tatsumi T (2003) Nat Mater 2:801. doi: https://doi.org/10.1038/nmat1022 CrossRefGoogle Scholar
  24. 24.
    Machala L, Zboril R, Gedanken A (2007) J Phys Chem B 111:4003. doi: https://doi.org/10.1021/jp064992s CrossRefGoogle Scholar
  25. 25.
    Srivastava DN, Perkas N, Gedanken A, Felner I (2002) J Phys Chem B 106:1878. doi: https://doi.org/10.1021/jp015532w CrossRefGoogle Scholar
  26. 26.
    Hashimotoa H, Yokoyamab S, Asaokaa H, Kusanoc Y, Ikedad Y, Senoe M, Takadaa J, Fujiia T, Nakanishia M, Murakami R (2007) J Magn Magn Mater 310:2405. doi: https://doi.org/10.1016/j.jmmm.2006.10.793 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Physics, Center of Functional Nanomaterials and DevicesEast China Normal UniversityShanghaiP.R. China

Personalised recommendations